2016年全国数学中考试题分类汇编第一期专题36 规律探索.doc
文本预览下载声明
规律探索
一、选择题
1. (2016·四川达州·3分)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是( )
A.25 B.33 C.34 D.50
【考点】规律型:图形的变化类.
【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.
【解答】解:∵第一次操作后,三角形共有4个;
第二次操作后,三角形共有4+3=7个;
第三次操作后,三角形共有4+3+3=10个;
…
∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;
当3n+1=100时,解得:n=33,
故选:B.
2. (2016·四川凉山州·4分)观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )
A.第504个正方形的左下角 B.第504个正方形的右下角
C.第505个正方形的左上角 D.第505个正方形的右下角
【考点】规律型:点的坐标.
【分析】根据图形中对应的数字和各个数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本题得以解决.
【解答】解:∵2016÷4=504,
又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,
∴第504个正方形中最大的数是2015,
∴数2016在第505个正方形的右下角,
故选D.
3.(2016.山东省临沂市,3分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是( )
A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2
【考点】规律型:图形的变化类.
【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.
【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;
第2个图形中,小正方形的个数是:32﹣1=8;
第3个图形中,小正方形的个数是:42﹣1=15;
…
∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;
故选:C.
【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.
二、填空题
1.(2016·黑龙江大庆)如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为 4n﹣3 .
【考点】规律型:图形的变化类.
【分析】结合题意,总结可知,每个图中三角形个数比图形的编号的4倍少3个三角形,即可得出结果.
【解答】解:第①是1个三角形,1=4×1﹣3;
第②是5个三角形,5=4×2﹣3;
第③是9个三角形,9=4×3﹣3;
∴第n个图形中共有三角形的个数是4n﹣3;
故答案为:4n﹣3.
【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.
2.(2016·湖北鄂州)如图,直线l:y=-x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2016的坐标为 .
【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.
【分析】由直线l:y=-x的解析式求出A1B1的长,再根据勾股定理,求出OB1的长,从而得出A2的坐标;再把A2的横坐标代入y=-x的解析式求出A2B2的长,再根据勾股定理,求出OB2的长,从而得出A3的坐标;…,由此得出一般规律.
【解答】解:∵点A1坐标为(-3,0),知O A1=3,
把x=-3代入直线y=-x中,得y=?4?,即A1B1=4.?
根据勾股定理,OB1===5,
∴A2坐标为(-5,0),O A2=5;
把x=-5代入直线y=-x中,得y=??,即A2B2=.?
根据勾股定理,OB2====,
∴A3坐标为(-,0),O A3=;
把x=-代入直线y=-x中,得y=??,即A3B3=.?
根据勾股定理,OB3====,
∴A4坐标为(-,0),O
显示全部