文档详情

19.2.3正方形(教学案).doc

发布:2017-10-13约字共3页下载文档
文本预览下载声明
19.2.3 正方形 一、教学目的 1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算. 2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力. 二、重点、难点 1.教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系. 2.教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用. 三、例题的意图分析 1是教材P111的例4,例2与例3都是补充的题目.其中例1与例2是正方形性质的应用,在讲解时,应注意引导学生能正确的运用其性质.例3是正方形判定的应用,它是先判定一个四边形是矩形,再证明一组邻边,从而可以判定这个四边形是正方形.随后可以再做一组判断题,进行练习巩固(参看随堂练习1),为了活跃学生的思维,可以问题让学生思考对角线相等的菱形是正方形吗?为什么? 对角线互相垂直的矩形是正方形吗?为什么? 对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件? 能说“四条边都相等的四边形是正方形”吗?为什么? 说“四个角相等的四边形是正方形”对吗? 四、课堂引入 做一做:用一张长方形的纸片(如图所示)折出一个正方形. 学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形? 正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形. 指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意: (1)有一组邻边相等的平行四边形 (菱形) (2)有一个角是直角的平行四边形 (矩形) 【问题】正方形有什么性质? 由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形. 所以,正方形具有矩形的性质,同时又具有菱形的性质.五、例习题分析 例1(教材P111的例4) 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形. 已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图). 求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形. 证明:∵  四边形ABCD是正方形, ∴  AC=BD, AC⊥BD, AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分). ∴ △ABO、△BCO、△CDO、△DAO都是等腰直角三角形, 并且 △ABO ≌△BCO≌△CDO≌△DAO. 例2 (补充)已知:如图,AEO≌△DFO,由于正方形的对角线垂直平分且相等,可以得到∠AOE=∠DOF=90°,AO=DO,再由同角或等角的余角相等可以得到∠EAO=∠FDO,根据ASA可以得到这两个三角形全等,故结论可得. 证明:∵ 四边形ABCD是正方形, ∴ ∠AOE=∠DOF=90°,AO=DO(正方形的对角线垂直平分且相等). 又 DG⊥AE, ∴ ∠EAO+∠AEO=∠EDG+∠AEO=90°.EAO=∠FDO. ∴ △AEO ≌△DFO. ∴ OE=OF. 例 (补充)已知:如图,四边形ABCD是正方形点A、C. 求证:四边形是正方形.PQMN是矩形,再证△ABM≌△DAN,证出AM=DN,用同样的方法证AN=DP.即可证出MN=NP.从而得出结论. 证明:∵  PN⊥l1,QM⊥l1, ∴ PN∥QM,∠PNM=90°. ∵  PQ∥NM, ∴  四边形PQMN是矩形. ∵ 四边形ABCD是正方形 ∴  ∠BAD=∠ADC=90°,AB=AD=DC(正方形的四条边都相等,四个角都是直角). ∴  ∠1+∠2=90°. 又  ∠3+∠2=90°,∴  ∠1=∠3. △ABM≌△DAN. ∴ AM=DN.同理 AN=DP. ∴ AM+AN=DN+DP 即 MN=PN. ∴  四边形PQMN是正方形(有一组邻边相等的矩形是正方形). 六、随堂练习 ____ __,四个角___ ____,两条对角线____ ____. 2.下列说法是否正确,并说明理由. ①对角线相等的菱形是正方形;( ) ②对角线互相垂直的矩形是正方形;( ) ③对角线垂直且相等的四边形是正方形;( ) ④四条边都相等的四边形是正方形;( ) ⑤四个角相等的四边形是正方形.( ) 已知:如图,四边形ABCD为正方形,E、F分别 为CD、CB延长线上的点,且DE=BF. 求证:∠AFE=∠AEF. 4.如图,E为正方形ABCD内一点,且△EBC是等边三角形, 求∠EAD与∠ECD的度数. 七、课后练习 2.已知:如图,△ABC中,∠C=90°,CD平分∠ACB,DE⊥BC于E,DF⊥AC于F.求证:四边形CFDE是正方形. 3.已知:如图,∠
显示全部
相似文档