文档详情

解直角三角形.pptx

发布:2025-02-24约2.48千字共25页下载文档
文本预览下载声明

;解直角三角形的应用

(1)通过解直角三角形能解决实际问题中的很多有关测量问。

如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度。

(2)解直角三角形的的一般过程是:

①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题)。

②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案。;;解直角三角形的应用-仰角俯角问题

(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角。

(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决。;解直角三角形的应用-方向角问题

(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数。

(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角。;例1.如图,在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),OA=2,∠AOB=60°.

(1)求点A的坐标;

(2)若直线AB交y轴于点C,求△AOC的面积.;(2)设直线AB的解析式为y=kx+b.

则有,;例2.如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.

(1)求证:①△AEF≌△BEC;②四边形BCFD是平行四边形;

(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.;分析:(1)①在△ABC中,由已知可得∠ABC=60°,从而推得∠BAD=∠ABC=60°.由E为AB的中点,得到AE=BE.又因为∠AEF=∠BEC,所以△AEF≌△BEC.

②在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形.

(2)在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2.

在Rt△ACH中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:AC求值.;证明:(1)①在△ABC中,∠ACB=90°,∠CAB=30°,

∴∠ABC=60°.

在等边△ABD中,∠BAD=60°,

∴∠BAD=∠ABC=60°.

∵E为AB的中点,

∴AE=BE.

又∵∠AEF=∠BEC,

∴△AEF≌△BEC.;②在△ABC中,∠ACB=90°,E为AB的中点,

∴CE=AB,BE=AB.

∴∠BCE=∠EBC=60°.

又∵△AEF≌△BEC,

∴∠AFE=∠BCE=60°.

又∵∠D=60°,

∴∠AFE=∠D=60°.

∴FC∥BD.

又∵∠BAD=∠ABC=60°,

∴AD∥BC,即FD∥BC.

∴四边形BCFD是平行四边形.;解:(2)∵∠BAD=60°,∠CAB=30°,

∴∠CAH=90°.

在Rt△ABC中,∠CAB=30°,设BC=a,

∴AB=2BC=2a.

∴AD=AB=2a.

设AH=x,则HC=HD=AD﹣AH=2a﹣x,

在Rt△ABC中,AC2=(2a)2﹣a2=3a2,

在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,

解得x=a,即AH=a.

∴HC=2a﹣x=2a﹣a=a.∴sin∠ACH=.;;;例4.盼盼同学在学习正多边形时,发现了以下一组有趣的结论:;;;例5.如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5度.

(1)求坡高CD;

(2)求斜坡新起点A与原起点B的距离(精确到0.1米).;解:

(1)在Rt△BCD中,

CD=BCsin12°≈10×0.21=2.1(米).?;;解:(1)过点A作AE⊥CD于点E.

根据题意,得∠DBC=∠α=60°,∠DAE=∠β=30°,AE=BC,EC=AB

显示全部
相似文档