2019届高考数学(北师大版文)复习配套练习:第九章 平面解析几何+第8讲 第2课时 定点、定值、范围、最值问题+Word版含答案.doc
文本预览下载声明
第2课时 定点、定值、范围、最值问题
一、选择题
1.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( )
A. B.[-2,2]
C.[-1,1] D.[-4,4]
解析 Q(-2,0),设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2+(4k2-8)x+4k2=0,由Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k≤1.
答案 C
2.(2017·石家庄模拟)已知P为双曲线C:-=1上的点,点M满足||=1,且·=0,则当||取得最小值时点P到双曲线C的渐近线的距离为( )
A. B. C.4 D.5
解析 由·=0,得OMPM,根据勾股定理,求|MP|的最小值可以转化为求|OP|的最小值,当|OP|取得最小值时,点P的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x±3y=0,所求的距离d=,故选B.
答案 B
3.已知椭圆C的方程为+=1(m>0),如果直线y=x与椭圆的一个交点M在x轴上的射影恰好是椭圆的右焦点F,则m的值为( )
A.2 B.2 C.8 D.2
解析 根据已知条件得c=,则点(,)在椭圆+=1(m>0)上,
+=1,可得m=2.
答案 B
4.若双曲线-=1(a>0,b>0)的渐近线与抛物线y=x2+2有公共点,则此双曲线的离心率的取值范围是( )
A.[3,+∞) B.(3,+∞) C.(1,3] D.(1,3)
解析 依题意可知双曲线渐近线方程为y=±x,与抛物线方程联立消去y得x2±x+2=0.
渐近线与抛物线有交点,Δ=-8≥0,求得b2≥8a2,c=≥3a,e=≥3.
答案 A
5.(2017·宝鸡一模)斜率为1的直线l与椭圆+y2=1相交于A,B两点,则|AB|的最大值为( )
A.2 B. C. D.
解析 设A,B两点的坐标分别为(x1,y1),(x2,y2),
直线l的方程为y=x+t,由消去y,
得5x2+8tx+4(t2-1)=0,
则x1+x2=-t,x1x2=.
|AB|=|x1-x2|=·
=·=·,
当t=0时,|AB|max=.
答案 C
二、填空题
6.已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点与抛物线y2=16x的焦点相同,则双曲线的方程为________.
解析 由条件知双曲线的焦点为(4,0),
所以解得a=2,b=2,
故双曲线方程为-=1.
答案 -=1
7.已知动点P(x,y)在椭圆+=1上,若A点坐标为(3,0),||=1,且·=0,则||的最小值是________.
解析 ·=0,⊥.
∴||2=||2-||2=||2-1,
椭圆右顶点到右焦点A的距离最小,
故||min=2,||min=.
答案
8.(2017·平顶山模拟)若双曲线x2-=1(b>0)的一条渐近线与圆x2+(y-2)2=1至多有一个公共点,则双曲线离心率的取值范围是________.
解析 双曲线的渐近线方程为y=±bx,则有≥1,解得b2≤3,则e2=1+b2≤4,e>1,1<e≤2.
答案 (1,2]
三、解答题
9.如图,椭圆E:+=1(ab0)的离心率是,点P(0,1)在短轴CD上,且·=-1.
(1)求椭圆E的方程;
(2)设O为坐标原点,过点P的动直线与椭圆交于A,B两点.是否存在常数λ,使得·+λ·为定值?若存在,求λ的值;若不存在,请说明理由.
解 (1)由已知,点C,D的坐标分别为(0,-b),(0,b).
又点P的坐标为(0,1),且·=-1,
于是解得a=2,b=.
所以椭圆E方程为+=1.
(2)当直线AB的斜率存在时,
设直线AB的方程为y=kx+1,
A,B的坐标分别为(x1,y1),(x2,y2).
联立得(2k2+1)x2+4kx-2=0.
其判别式Δ=(4k)2+8(2k2+1)0,
所以,x1+x2=-,x1x2=-.
从而,·+λ·=x1x2+y1y2
+λ[x1x2+(y1-1)(y2-1)]
=(1+λ)(1+k2)x1x2+k(x1+x2)+1
==--λ-2.
所以,当λ=1时,--λ-2=-3.
此时,·+λ·=-3为定值.
当直线AB斜率不存在时,直线AB即为直线CD,
此时·+λ·=·+·=
-2-1=-3,
故存在常数λ=1,使得·+λ·为定值-3.
10.(2016·浙江卷)如图,设椭圆+y2=1(a>1).
(1)求直线y=kx+1被椭圆截得的线段长(用a,k表示);
(2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.
解 (1)设直线y=kx+1被椭圆截得的线段为AM,由得(1+a2k2)x2+2a2kx=0.
故
显示全部