文档详情

知识讲解“函数应用”全章复习巩固基础.doc

发布:2017-06-08约5.11千字共9页下载文档
文本预览下载声明
《函数应用》全章复习与巩固 编稿:丁会敏 审稿:王静伟 【学习目标】 1.理解方程的根与函数零点的关系,会用二分法求函数零点。 2.进一步理解函数是刻画日常生活规律的重要模型,在用函数的过程中理解函数的概念、性质和函数思想方法。 3.在用数学解决问题的实践中,感受数学应用的层次,体验数学建模的过程和步骤,了解数学建模的意义,发展应用数学的意识。 【知识网络】 函数应用 函数与方程 实际问题的函数建模 利用二分法求方程的近似解 利用函数性质判定方程解的存在 实际问题的函数刻画 用函数模型解决实际问题 函数模型案例 【要点梳理】 要点一:函数、方程的有关问题 1.一般地,一元二次方程ax2+bx+c=0(a≠0)的根与二次函数 y= ax2+bx+c (a≠0)的图像有如下关系: 判别式D=b2-4acD0D=0 D0二次函数y=ax2+bx+c 的图像 一元二次方程ax2+bx+c=0的根有两个不相等的实数根x1,x2有两个相等实数根x1=x2没有实数根二次函数y=ax2+bx+c 的图像与x轴的交点(x1,0), (x2,0) (x1,0)没有交点 要点诠释: (1)方程的根与函数的零点:方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点. (2)方程的根与函数的零点:方程f(x)=0有实数根的个数?函数y=f(x)的图象与x轴有交点的个数?函数y=f(x)的零点的个数. 2.函数零点的判定 (1)利用函数零点存在性的判定定理 如果函数在一个区间上的图象不间断,并且在它的两个端点处的函数值异号,即,则这个函数在这个区间上,至少有一个零点,即存在一点,使,这个也就是方程的根. 要点诠释: ①满足上述条件,我们只能判定区间内有零点,但不能确定有几个.若函数在区间内单调,则只有一个;若不单调,则个数不确定. ②若函数在区间上有,在内也可能有零点,例如在上,在区间上就是这样的.故在内有零点,不一定有. ③若函数在区间上的图象不是连续不断的曲线,在内也可能是有零点,例如函数在上就是这样的. (2)利用方程求解法 求函数的零点时,先考虑解方程,方程无实根则函数无零点,方程有实根则函数有零点. (3)利用数形结合法 函数的零点就是方程的实数根,也就是函数的图象与的图象交点的横坐标. 3.用二分法求函数零点的一般步骤: 已知函数定义在区间D上,求它在D上的一个零点x0的近似值x,使它满足给定的精确度. 第一步:在D内取一个闭区间,使与异号,即,零点位于区间中. 第二步:取区间的中点,则此中点对应的坐标为 . 计算和,并判断: ①如果,则就是的零点,计算终止; ②如果,则零点位于区间中,令; ③如果,则零点位于区间中,令 第三步:取区间的中点,则此中点对应的坐标为 . 计算和,并判断: ①如果,则就是的零点,计算终止; ②如果,则零点位于区间中,令; ③如果,则零点位于区间中,令; …… 继续实施上述步骤,直到区间,函数的零点总位于区间上,当和按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数的近似零点,计算终止.这时函数的近似零点满足给定的精确度. 要点诠释: (1)第一步中要使:①区间长度尽量小;②、的值比较容易计算且. (2)根据函数的零点与相应方程的根的关系,求函数的零点和求相应方程的根式等价的.对于求方程的根,可以构造函数,函数的零点即为方程的根. 要点二:函数的实际应用 求解函数应用题时一般按以下几步进行: 第一步:审题 弄清题意,分清条件和结论,理顺数量关系,初步选择模型. 第二步:建模 在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求. 第三步:求模 运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果. 第四步:还原 把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景. 上述四步可概括为以下流程: 实际问题(文字语言)数学问题(数量关系与函数模型)建模(数学语言)求模(求解数学问题)反馈(还原成实际问题的解答). 【典型例题】 类型一:关于函数的零点与方程根的关系问题 例1.求函数的零点。 【答案】1,2 【解析】 因为, 令,即,即 解得,所以函数的零点是1,2。 【总结升华】求函数的零点就是求相应方程的实数根,一般可以借助求根公式或因式分解等方法,求出方程的根,从而得到函数的零点. 举一反三: 【变式1】函数的零点。 【答案】 例2.函数的零点所在的一个区间是( ) A.(-2,-1) B.(-1,0) C.(0
显示全部
相似文档