文档详情

数学建模实验报告-统计回归模型.doc

发布:2016-07-30约字共7页下载文档
文本预览下载声明
《数学建模与数学实验》实验报告 实验2 统计回归模型 专业、班级 学号 姓名 课程编号 实验类型 验证性 学时 2 实验(上机)地点 教七楼数学实验中心 完成时间 任课教师 评分 一、实验目的及要求 1.掌握数学软件Matlab,c++的基本用法和一些常用的规则,能用该软件进行编程; 2.能够借助数学软件进行统计回归数学模型问题的求解和分析; 3.理解统计回归数学模型的数学原理,并能够分别利用统计回归数学模型进行实际问题的建模。 二、借助数学软件,研究、解答以下问题 某公司想用全行业的销售额作为自变量来预测公司的销售量,表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元) (1) 画出数据的散点图,观察用线性回归模型拟合是否合适。 (2) 建立公司销售额对全行业的回归模型,并用DW检验诊断随机误差项的自相关性。 (3) 建立消除了随机误差项自相关性之后的回归模型 年 季 t 公司销售额y 行业销售额x 1977 1978 1979 1980 1981 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20.96 21.40 21.96 21.52 22.39 22.76 23.48 23.66 24.10 24.01 24.54 24.30 25.00 25.64 26.36 26.98 27.52 27.78 28.24 28.78 127.3 130.0 132.7 129.4 135.0 137.1 141.2 142.8 145.5 145.3 148.3 146.4 150.2 153.1 157.3 160.7 164.2 165.6 168.7 171.7 画数据的散点图如下,观察发现用线性回归模型拟合比较合适。 代码: x=[127.3,130.0,132.7,129.4,135.0,137.1,141.2,142.8,145.5,145.3,... 148.3,146.4,150.2,153.1,157.3,160.7,164.2,165.6,168.7,171.7]; y=[20.96,21.40,21.96,21.52,22.39,22.76,23.48,23.66,24.10,24.01,... 24.54,24.30,25.00,25.64,26.36,26.98,27.52,27.78,28.24,28.78]; plot(x,y,.) title(数据散点图) xlabel(行业销售额x); ylabel(公司销售额y) 二.建立公司销售额对全行业的回归模型,并用DW检验诊断随机误差项的自相关性。 1.模型求解结果: b = -1.4548 0.1763 bint = -1.9047 -1.0048 0.1732 0.1793 stats = 1.0e+004 * 0.0001 1.4888 0 0.0000 结果分析:y的100%可由模型确定,F=14888远超过F检验的临界值,p远小于, 的置信区间bint不包含零点,但是,从图中可以看出,第4个点的残差的置信区间rint不包含零点,应作为异常点去掉。 代码: figure %模型求解 X=[ones(20,1) x]; [b,bint,r,rint,stats]=regress(y,X); b,bint,stats,rcoplot(r,rint) 去掉第4个异常点后的模型求解 结果: b0 = -1.6093 0.1773 bint0 = -2.0403 -1.1783 0.1744 0.1802 stats0 = 1.0e+004 * 0.0001 1.6752 0 0.0000 代码: %去除第4个点(异常点) x0=[127.3,130.0,132.7,135.0,137.1,141.2,142.8,145.5,145.3,... 148.3,146.4,150.2,153.1,157.3,160.7,164.2,165.6,168.7,171.7]; y0=[20.96,21.40,21.96,22.39,22.76,23.48,23.66,24.10,24.01,... 24.54,24.30,25.00,25.64,26.36,26.98,27.52,27.78,28.24,28.78]; X0=[on
显示全部
相似文档