文档详情

126离散型随机变量的均值与方差正态分布(教师版)理.docx

发布:2017-01-28约5.45千字共9页下载文档
文本预览下载声明
§12.6 离散型随机变量的均值与方差、正态分布基础知识:1.离散型随机变量的均值与方差若离散型随机变量X的分布列为Xx1x2…xi…xnPp1p2…pi…pn(1)均值称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)方差称D(X)= (xi-E(X))2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根为随机变量X的标准差.2.均值与方差的性质(1)E(aX+b)=aE(X)+b.(2)D(aX+b)=a2D(X).(a,b为常数)3.两点分布与二项分布的均值、方差(1)若X服从两点分布,则E(X)=__p__,D(X)=p(1-p).(2)若X~B(n,p),则E(X)=__np__,D(X)=np(1-p).4.正态分布(1)正态曲线:函数φμ,σ(x)=e-,x∈(-∞,+∞),其中μ和σ为参数(σ0,μ∈R).我们称函数φμ、σ(x)的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的性质:①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值;④曲线与x轴之间的面积为__1__;⑤当σ一定时,曲线的位置由μ确定,曲线随着__μ__的变化而沿x轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ__越小__,曲线越“瘦高”,表示总体的分布越集中;σ__越大__,曲线越“矮胖”,表示总体的分布越分散,如图乙所示. (3)正态分布的定义及表示如果对于任何实数a,b (ab),随机变量X满足P(aX≤b)=?φμ,σ(x)dx,则称随机变量X服从正态分布,记作X~N(μ,σ2).正态总体在三个特殊区间内取值的概率值①P(μ-σX≤μ+σ)=0.682_6;②P(μ-2σX≤μ+2σ)=0.954_4;③P(μ-3σX≤μ+3σ)=0.997_4.基础练习:1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.( √ )(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.( √ )(3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.( √ )(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( √ )2.设随机变量ξ的分布列为P(ξ=k)=(k=2,4,6,8,10),则D(ξ)等于( )A.5 B.8 C.10 D.16答案 B解析 ∵E(ξ)=(2+4+6+8+10)=6,∴D(ξ)=[(-4)2+(-2)2+02+22+42]=8.3.设随机变量X服从正态分布N(2,9),若P(Xc+1)=P(Xc-1),则c等于( )A.1 B.2 C.3 D.4答案 B解析 ∵μ=2,由正态分布的定义知其图象关于直线x=2对称,于是=2,∴c=2.4.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=________.答案 解析 由题意知取到次品的概率为,∴X~B(3,),∴D(X)=3××(1-)=.5.在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X的均值是________.答案 0.7解析 E(X)=1×0.7+0×0.3=0.7.深度分类剖析:题型一 离散型随机变量的均值、方差例1 (2013·浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E(η)=,D(η)=,求a∶b∶c.思维启迪 首先列出随机变量ξ的所有可能的取值,然后计算ξ的每个取值的概率.解 (1)由题意得ξ=2,3,4,5,6.故P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,P(ξ=5)==,P(ξ=6)==.所以ξ的分布列为ξ23456P(2)由题意知η的分布列为Η123P所以E(η)=++=,D(η)=2·+2·+2·=.化简得解得a=3c,b=2c,故a∶b∶c=3∶2∶1.思维升华 (1)求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算.(2)注意性质的应用:若随机变量X的期望为E(X),则对应随机变量a
显示全部
相似文档