文档详情

4_样本均数的显著性检验.ppt

发布:2017-05-02约3.08千字共41页下载文档
文本预览下载声明
显著性检验的基本类型、方法及原理;连续性变量均数、方差的显著性检验;一、方差的同质性检验;1.单个样本方差的同质性检验; χ0.952=16.92 χ0. 05 2=1.73;2. 两个样本方差的显著性检验;例4.2:测定20位青年男子和20位老年男子的血压值(收缩压mmHg)如下表,问老年人血压值个体间波动是否显著高于青年人?;一般大方差作分子,小方差作分母(右尾检验:假定σ1≤σ2);二、样本均数的显著性检验;【例4.4】 按饲料配方规定,每1000kg某种饲料中维生素C不得少于246g,现从工厂的产品中随机抽测12个样品,测得维生素C含量如下:255、 260、262、 248、244、245、 250、 238、 246、248、 258、270g/1000kg,若样品的维生素C含量服从正态分布,问此产品是否符合规定要求? ;;2.两个样本平均数的显著性检验 ;(1)成组设计样本均数的差异显著性检验 成组设计,又称非配对设计,是指当进行只有两个处理的试验时,将试验单位完全随机地分成两组,然后对两组随机施加一个处理。 在这种设计中两组的试验单位相互独立,所得的二个样本相互独立,其含量不一定相等。非配对设计资料的一般形式见下表:;;例2. 研究26-28MPa高氮气压处理对西瓜(京引21和花皮88)经济性状(单瓜种、含糖量)的影响,实验结果见SPSS文档: 试检验该高压处理种子对西瓜的品质改良是否有效? ;* 非配对设计要求试验单位尽可能一致。 如果试验单位变异较大,如试验动物的年龄、体重相差较大,若采用上述方法就有可能使处理效应受到系统误差的影响而降低试验的准确性与精确性。 为了消除试验单位不一致对试验结果的影响,正确地估计处理效应,减少系统误差,降低试验误差,提高试验的准确性与精确性,可以利用局部控制的原则,采用配对设计。; 配对设计是指先根据配对的要求将试验单位两两配对,然后将配成对子的两个试验单位随机地分配到两个处理组中。 配对的要求是:配成对子的两个试验单位的初始条件尽量一致,不同对子间试验单位的初始条件允许有差异,每一个对子就是试验处理的一个重复。 配对的方式有两种: 自身配对 同源配对;自身配对 指同一试验单位在不同时间分别接受前后两次处理,用其前后两次的观测值进行自身对照比较;或同一试验单位的不同部位的观测值或不同方法的观测值进行自身对照比较。如观测某种病畜治疗前后临床检查结果的变化;观测用两种不同方法对畜产品中毒物或药物残留量的测定结果变化等。 同源配对 指将来源相同、性质相同的两个个体配成一对,如将畜别、品种、窝别、性别、年龄、体重相同的两个试验动物配成一对,然后对配对的两个个体随机地实施不同处理。 ; 【例3】 现从8窝仔猪中每窝选出性别相同、体重接近的仔猪两头进行饲料对比试验,将每窝两头仔猪随机分配到两个饲料组中,时间30天,试验结果见表3。问两种饲料喂饲仔猪增重有无显著差异? 表3 仔猪饲料对比试验(单位:kg );例2:研究某种降压药的降压效果,分别选取13个高血压病人进行试验,服药前后各病人的血压数值如下: 试检验该降压药对治疗高血压是否有效:;Ti;方差分析又称变量分析,是英国统计学家R.A.Fisher于1923年提出的。 “ 方差分析法是一种在若干能相互比较的资料组中,把产生变异的原因加以区分开来的方法与技术” ,实质上是关于观测值变异原因的数量分析。;总体指导思想:将k 个处理的观测值作为一个整体看待,把观测值总变异的平方和及自由度按照变异原因,分解为处理效应和实验误差的平方和及自由度,进而获得处理效应和实验误差的总体方差估计值;然后在一定概率意义上对处理效应与实验误差的总体方差的估计值进行显著性比较,检验各样本所属总体平均数是否相等,从而找出影响总变异的主要因素。; 表1 k个处理每个处理有n个观测值的数据模式 ;1.线性模型与基本假定;因素试验的数学模型成立有三个基本假定: 效应的可加性(additivity) 分布的正态性(normality) 方差的同质性(homogeneity);;如果F Fα,结则误差引起的概率Pα,在α概率水平上否定H0;即各μi不全相等,处理有效。;Ti; F值显著或极显著,否定了无效假设HO ,表明试验的总变异主要来源于处理间的变异,试验中各处理平均数不全相等或处理效应不为零,但并不意味着每两个处理平均数间的差异都显著或极显著,也不能具体说明哪些处理平均数间有显著或极显著差异,哪些差异不显著。因而有还必须进行两两处理均数间的比较,以具体判断两两处理均数间的差异显著性。 统计上把多个平均数两两
显示全部
相似文档