一次函数知识点总结及练习题(同名8436).doc
文本预览下载声明
一次函数知识点总结及练习题(同名8436)
PAGE 3
第四章 一次函数知识点总结
4.1.1 变量和函数
1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 例如:y=±x,当x=1时,y有两个对应值,所以y=±x不是函数关系。对于不同的自变量x的取值,y的值可以相同,例如,函数:y=|x|,当x=±1时,y的对应值都是1
3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数取值范围的方法:
(1)关系式为整式时,函数定义域为全体实数;
(2)关系式含有分式时,分式的分母不等于零;
下,等号右边的变量是自变量,等号左边的变量是因变量。用函数解析式表示函数关系的方法就是公式法。
4、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
5、描点法画函数图形的一般步骤(通常选五点法)
第一步:列表(根据自变量的取值范围从小到大或从中间向两边取值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);
第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
4. 2 一次函数及其图像
1、一次函数及性质
一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.
注:一次函数一般形式 y=kx+b (k不为零) = 1 \* GB3 ① k不为零 = 2 \* GB3 ②x指数为1 = 3 \* GB3 ③ b取任意实数
k(称为斜率)表示直线y=kx+b(k≠0)的倾斜程度,b称为截距
一次函数y=kx+b的图象是经过(0,b)和(-,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.
(1)解析式:y=kx+b(k、b是常数,k0) 必过点:(0,b)和(-,0)
(3)走向: 依据k、b的值分类判断,见下图
(4)增减性: k0,y随x的增大而增大;k0,y随x增大而减小.
(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.
(6)图像的平移: 当b0时,将直线y=kx的图象向上平移b个单位;
当b0时,将直线y=kx的图象向下平移b个单位.
b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;
②当b<0时,直线与y轴交于负半轴上;
③当b=0时,直线经过原点,是正比例函数
2、正比例函数性质:
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注:正比例函数一般形式 y=kx (k不为零) = 1 \* GB3 ① k不为零 = 2 \* GB3 ② x指数为1 = 3 \* GB3 ③ b取零
解析式:y=kx(k是常数,k≠0) 必过点:(0,0)、(1,k)
走向:k0时,图像经过一、三象限;k0时,图像经过二、四象限
增减性:k0,y随x的增大而增大;k0,y随x增大而减小
倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴
3、一次函数y=kx+b的图象的画法.
根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.
b0
b0
b=0
k0
经过第一、二、三象限
经过第一、三、四象限
经过第一、三象限
图象从左到右上升,y随x的增大而增大
k0
经过第一、二、四象限
经过第二、三、四象限
经过第二、四象限
图象从左到右下降,y随x的增大而减小
4、正比例函数与一次函数图象之间的关系
一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b0时,向上平移;当b0时,向下平移,).上加下减,左加右减
5、直线y=k1x+b1与y=k2x+b2的位置关系
(1)两直线平行:k1=k2且b1 b2 (2)两直线相交:k1k2
(3)两直线重合:k1=k2且b1=b2 (4)两直线垂直:即k1﹒k2=-1
(5)两直线交于y轴上同一点: b1=b2
6、斜率
斜率即是K斜率,
显示全部