专题04 二元一次方程组一元二次方程(7类中考高频题型归纳与训练)(解析版).docx
专题04二元一次方程组一元二次方程
课标要求
考点
考向
1.能根据现实情境理解方程的意义,能针对具体问题列出方程;理解方程解的意义,经历估计方程解的过程。
2.掌握消元法,能解二元一次方程组。
3.理解配方法,能用配方法、公式法、因式分解法解数字系数的
一元二次方程。
4.会用一元二次方程根的判别式判别方程是否有实根及两个实根
是否相等。
5.了解一元二次方程的根与系数的关系。
6.能根据具体问题的实际意义,检验方程解的合理性。
二元一次方程组的应用
考向一由实际问题抽象二元一次方程组
考向二二元一次方程组的实际应用
一元二次方程
考向一根的判别式
考向二利用根与系数的关系求代数式的值
考向三利用根与系数的关系求字母的值
考向四根的判定式与根与系数的关系的综合运用
考向五一元二次方程的实际应用
考点一二元一次方程组的实际应用
?考向一由实际问题抽象二元一次方程组
1.(2024?湖北)我国古代数学著作《九章算术》中记载了一个关于“方程”的问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:“今有牛5头,羊2头,共值金10两,牛2头,羊5头,共值金8两,问牛、羊每头各值金多少?”若设牛每头值金x两,羊每头值金y两,则可列方程组是()
A.5x+2y=102
C.5x+5y=10
【分析】因为每头牛值金x两,每头羊值金y两,根据“牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两”,即可得出关于x、y的二元一次方程组,此题得解.
【解答】解:根据题意得:5x
故选:A.
【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
2.(2023?荆州)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还余4.5尺;将绳子对折再量木条,木条余1尺,问木条长多少尺?若设木条长x尺,绳子长y尺,则可列方程组为()
A.y=x+4.50.5y
C.y=x+4.5y
【分析】根据“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺”,即可得出关于x,y的二元一次方程组,此题得解.
【解答】解:设木条长x尺,绳子长y尺,所列方程组为:y=
故选:A.
【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.
3.(2022?武汉)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()
A.9 B.10 C.11 D.12
【分析】由题意:每一横行、每一竖列以及两条对角线上的3个数之和相等,表示出最中间的数和最右下角的数,列出二元一次方程组,解方程组即可.
【解答】解:∵每一横行、每一竖列以及两条对角线上的3个数之和相等,
∴最左下角的数为:6+20﹣22=4,
∴最中间的数为:x+6﹣4=x+2,或x+6+20﹣22﹣y=x﹣y+4,
最右下角的数为:6+20﹣(x+2)=24﹣x,或x+6﹣y=x﹣y+6,
∴x+2=
解得:x=10
∴x+y=12,
故选:D.
【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
?考向二二元一次方程组的实际应用
解题技巧
1、列方程组解决实际问题是把“未知”化为“已知”的过程,其关键是把已知量和未知量联系起来,找出题中的等量关系,列出方程组.
2、列二元一次方程组解决实际问题的一般步骤:
(1)审:审题,找出问题中的已知条件和未知量及它们之间的关系.
(2)设:设元,找出题中的两个关键的未知量,并用字母表示出来.
(3)找:找等量关系,挖掘题目中的所有条件,找出两个等量关系.
(4)列:根据等量关系,列出方程组.
(5)解:解方程组,求出未知数的值.
(6)答:检验所求解是否符合实际意义,然后作答.
4.(2022?宜昌)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为()
A.30 B.26 C.24 D.22
【分析】设1艘大船可载x人,1艘小船可载y人,依题意:1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.列出二元一次方程组,求出x+y的值即可.
【解答】解:设1艘大船可载x人,1艘小船可载y