二次函数知识点分类总结及练习题(无答案).doc
文本预览下载声明
二次函数的定义
(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)
1、下列函数中,是二次函数的是 .
①y=x2-4x+1; ②y=2x2; ③y=2x2+4x; ④y=-3x;
⑤y=-2x-1; ⑥y=mx2+nx+p; ⑦y =错误!未定义书签。y=ax2+bx+c则最值为
1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为 。
2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b= ,c= .
3.抛物线y=x2+3x的顶点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( )
A. B. C. D.
5.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( )
A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴
C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴
6.已知抛物线y=x2+(m-1)x-的顶点的横坐标是2,则m的值是_ .
7.抛物线y=x2+2x-3的对称轴是 。
8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m= 。
9.当n=______,m=______时,函数y=(m+n)xn+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________.
10.已知二次函数y=x2-2ax+2a+3,当a= 时,该函数y的最小值为0.
11.已知二次函数y=mx2+(m-1)x+m-1有最小值为0,则m= ______ 。
12.已知二次函数y=x2-4x+m-3的最小值为3,则m= 。
函数y=ax2+bx+c的图象和性质
1.抛物线y=x2+4x+9的对称轴是 。
2.抛物线y=2x2-12x+25的开口方向是 ,顶点坐标是 。
3.试写出一个开口方向向上,对称轴为直线x=-2,且与y轴的交点坐标为(0,3)的抛物线的解析式 。
4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标:
(1)y=x2-2x+1 ; (2)y=-3x2+8x-2; (3)y=-x2+x-4
5.把抛物线y=x2+bx+c的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是y=x2-3x+5,试求b、c的值。
6.把抛物线y=-2x2+4x+1沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。
7.某商场以每台2500元进口一批彩电。如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?
函数y=a(x-h)2的图象与性质
1.填表:
抛物线 开口方向 对称轴 顶点坐标 2.已知函数y=2x2,y=2(x-4)2,和y=2(x+1)2。
(1)分别说出各个函数图象的开口方、对称轴和顶点坐标。
(2)分析分别通过怎样的平移。可以由抛物线y=2x2得到抛物线y=2(x-4)2和y=2(x+1)2?
3.试写出抛物线y=3x2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。
(1)右移2个单位;(2)左移个单位;(3)先左移1个单位,再右移4个单位。
4.试说明函数y=(x-3)2 的图象特点及性质(开口、对称轴、顶点坐标、增减性、最值)。
5.二次函数y=a(x-h)2的图象如图:已知a=,OA=OC,试求该抛物线的解析式。
二次函数的增减性
1.二次函数y=3x2-6x+5,当x1时,y随x的增大而 ;当x1时,y随x的增大而 ;当x=1时,函数有最 值是 。
2.已知函数y=4x2-mx+5,当x -2时,y随x的增大而增大;当x -2时,y随x的增大而减少;则x=1时,y的值为 。
3.已知二次函数y=x2-(m+1)x+1,当x≥1时,y随x的增大而增大,则m的取值范围是 .
4.已知二次函数y=-x2+3x+的图象上有三点A(x1,y1),B(x2,y2),C(x3,y3)且3x1x2x3
显示全部