2003数学四.pdf
文本预览下载声明
2003
2
x
1lim[1+ln(1+x)] = .
x →0
e2
2 2
ln[1+ln(1+x )]
lim[1+ln(1+x)]x = lim e x
x →0 x →0
+ +x +x
2 ln[1 ln(1 )] 2 ln(1 )
lim lim
x →0 x x →0 x 2
= e e e .
1
2∫−1 ( x +x )e−x dx = .
2(1−2e−1 )
1 1 1
( x +x )e−x dx = x e−x dx + xe −x dx
∫−1 ∫−1 ∫−1
1 1 1
−x −x −x
= ∫−1 x e dx +2∫0 xe dx =−2∫0 xde
1
−x 1 −x −1
= −2(xe 0 − e dx) = 2(1−2e ) .
∫0
a, 0 ≤x ≤1,
⎧
(3) a0 f (x) g (x) ⎨ D
0,
⎩
I ∫∫f (x)g (y −x)dxdy = .
D
a 2
I ∫∫f (x)g (y −x)dxdy = ∫∫a 2 dxdy
D 0≤x ≤1,0≤y −x ≤1
1 x +1 1
2 2
显示全部