文档详情

非线性回归分析(教案).doc

发布:2017-02-11约2.63千字共3页下载文档
文本预览下载声明
1.3非线性回归问题, 知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。 能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。 情感目标:体会数学知识变化无穷的魅力。 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法. 教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程: 一、复习准备: 对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课: 1. 探究非线性回归方程的确定: 1. 给出例1:一只红铃虫的产卵数和温度有关,现收集了7组观测数据列于下表中,试建立与之间的回归方程. 温度  21  23  25  27  29  32  35 产卵数个  7  11  21  24  66  115  325 (学生描述步骤,教师演示) 2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y=的周围(其中是待定的参数),故可用指数函数模型来拟合这两个变量. ③ 在上式两边取对数,得,再令,则,而与间的关系如下: X  21  23  25  27  29  32  35 z 1.946 2.398 3.045 3.178 4.190 4.745 5.784 观察与的散点图,可以发现变换后样本点分布在一条直线的附近,因此可以用线性回归方程来拟合. ④ 利用计算器算得,与间的线性回归方程为,因此红铃虫的产卵数对温度的非线性回归方程为. ⑤ 利用回归方程探究非线性回归问题,可按“作散点图建模确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究 例2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数x与增大的容积y之间的关系. 【解】先根据试验数据作散点图,如图所示: 使用次数x 2 3 4 5 6 7 8 9 增大的容积y 6.42 8.20 9.58 9.50 9.70 10.00 9.93 9.99 z=a′+bt,t、z的数值对应表为: 【题后点评】作出散点图,由散点图选择合适的回归模型是解决本题的关键,在这里线性回归模型起了转化的作用. 例2:一只红铃虫的产卵数和温度有关,现收集了7组观测数据列于下表中,试建立与之间的回归方程. 温度  21  23  25  27  29  32  35 产卵数个  7  11  21  24  66  115  325 2、讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量呈非线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y=的周围(其中是待定的参数),故可用指数函数模型来拟合这两个变量. X  21  23  25  27  29  32  35 z 1.946 2.398 3.045 3.178 4.190 4.745 5.784 ③ 在上式两边取对数,得,再令,则,而与间的关系如下: 观察与的散点图,可以发现变换后样本点分布在一条直线的附近,因此可以用线性回归方程来拟合. ④ 利用计算器算得,与间的线性回归方程为,因此红铃虫的产卵数对温度的非线性回归方程为. ⑤ 利用回归方程探究非线性回归问题,可按“作散点图建模确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 2. 小结:用回归方程探究非线性回归问题的方法、步
显示全部
相似文档