[圆锥曲线例题4.doc
文本预览下载声明
圆锥曲线例题2
例1 椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程.
分析:题目没有指出焦点的位置,要考虑两种位置.
解:(1)当为长轴端点时,,,
椭圆的标准方程为:;
(2)当为短轴端点时,,,
椭圆的标准方程为:;
说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.
例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.
解: ∴,
∴.
说明:求椭圆的离心率问题,通常有两种处理方法,一是求,求,再求比.二是列含和的齐次方程,再化含的方程,解方程即可.
例3 已知中心在原点,焦点在轴上的椭圆与直线交于、两点,为中点,的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.
解:由题意,设椭圆方程为,
由,得,
∴,, ,∴,
∴为所求.
说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.
例4椭圆上不同三点,,与焦点的距离成等差数列.
(1)求证;
(2)若线段的垂直平分线与轴的交点为,求直线的斜率.
证明:(1)由椭圆方程知,,.
由圆锥曲线的统一定义知:,
∴ .
同理 .
∵ ,且, ∴ ,
即 .
(2)因为线段的中点为,所以它的垂直平分线方程为
.
又∵点在轴上,设其坐标为,代入上式,得
又∵点,都在椭圆上,
∴
∴ .
将此式代入①,并利用的结论得
∴ .
例5 已知椭圆,、为两焦点,问能否在椭圆上找一点,使到左准线的距离是 与的等比中项?若存在,则求出点的坐标;若不存在,请说明理由.
解:假设存在,设,由已知条件得
,,∴,.
∵左准线的方程是,
∴.
又由焦半径公式知:
,
.
∵,
∴.
整理得.
解之得或. ①
另一方面. ②
则①与②矛盾,所以满足条件的点不存在.
说明:
(1)利用焦半径公式解常可简化解题过程.
(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.
(3)本例也可设存在,推出矛盾结论(读者自己完成).
例6 已知椭圆,求过点且被平分的弦所在的直线方程.
分析一:已知一点求直线,关键是求斜率,故设斜率为,利用条件求.
解法一:设所求直线的斜率为,则直线方程为.代入椭圆方程,
并整理得.
由韦达定理得.
∵是弦中点,∴.故得.
所以所求直线方程为.
分析二:设弦两端坐标为、,列关于、、、的方程组,从而求斜率:.
解法二:设过的直线与椭圆交于、,则由题意得
①-②得. ⑤
将③、④代入⑤得,即直线的斜率为.
所求直线方程为.
说明:
有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;
过定点的弦中点轨迹.
(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.
(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.
例7 求适合条件的椭圆的标准方程.
(1)长轴长是短轴长的2倍,且过点;
(2)在轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.
分析:当方程有两种形式时,应分别求解,如(1)题中由求出,,
在得方程后,不能依此写出另一方程.
解:(1)设椭圆的标准方程为或.
由已知. ①
又过点,因此有
或. ②
由①、②,得,或,.故所求的方程为
或.
(2)设方程为.由已知,,,所以.故所求方程为.
说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的
显示全部