文档详情

High-Performance Liquid Chromatography(高效液相色谱法).pdf

发布:2017-07-24约8.52千字共4页下载文档
文本预览下载声明
High-Performance Liquid Chromatography High Performance Liquid Chromatography (HPLC) was developed in the late 1960s and early 1970s. Today it is widely applied for separations and purifications in a variety of areas including pharmaceuticals, biotechnology, environmental, polymer and food industries. HPLC has over the past decade become the method of choice for the analysis of a wide variety of compounds. Its main advantage over GC is that the analytes do not have to be volatile, so macromolecules are suitable for HPLC analysis. HPLC is accomplished by injection of a small amount of liquid sample into a moving stream of liquid (called the mobile phase) that passes through a column packed with particles of stationary phase. Separation of a mixture into its components depends on different degrees of retention of each component in the column. The extent to which a component is retained in the column is determined by its partitioning between the liquid mobile phase and the stationary phase. In HPLC this partitioning is affected by the relative solute/stationary phase and solute/mobile phase interactions. Thus, unlike GC, changes in mobile phase composition can have an enormous impact on your separation. Since the compounds have different mobilities, they exit the column at different times; i.e., they have different retention times, tR . The retention time is the time between injection and detection. There are numerous detectors which can be used in liquid chromatography. It is a device that senses the presence of components different from the liquid mobile phase and converts that information to an electrical signal. For qualitative identification one must rely on matching retention times of known compounds with the retention times of components in the unknown mixture. It is important to remember that any changes in operating conditions will affect the retention time which will affect the a
显示全部
相似文档