331二元一次不等式(组)与平面区域1.doc
文本预览下载声明
高二 数学 导学案
课题:3.3.1 二元一次不等式 组 与平面区域 【课程学习目标】
1.了解二元一次不等式 组 的几何意义.
2.能从实际情景中抽象出二元一次不等式 组 .
3.会画二元一次不等式 组 表示的平面区域.
【独学内容】
一、知识导学:
问题1、回顾一下必修2第二章直线的方程的概念
1.直线方程的一般形式为________________
2.直线上的所有点的坐标都适合直线方程,不在直线上的点则都不适合直线方程.
问题2、预习课本85—86页回答以下问题
1.二元一次不等式 组 的概念
含有______未知数,并且未知数的次数是____的不等式叫做二元一次不等式.由几个二元一次不等式组成的不等式组叫做二元一次不等式组.
在平面直角坐标系中,作直线l:x+y-1 0,直线上的所有点的都满足l的方程,不在直线l上的点不满足直线l的方程.在平面直角坐标系中,找出以下点
(0,2),(1,3),(0,5),(-1,0)(0,0),(1,-1)
看一下它在直线的哪一方?并把它们的坐标分别代入式子x+y-1 0中,你有什么发现
?
2.二元一次不等式表示平面区域
在平面直角坐标系中,二元一次不等式Ax+By+C>0表示直线_______________某一侧所有点组成的平面区域,把直线画成虚线以表示区域不包括边界.不等式Ax+By+C≥0表示的平面区域包括边界,把边界画成_______
3.二元一次不等式表示的平面区域的确定
1 直线Ax+By+C=0同一侧的所有点的坐标 x,y 代入Ax+By+C,所得的符号都_______
2 在直线Ax+By+C=0的一侧取某个特殊点 x0,y0 ,由______________的符号可以断定Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.
二、基础学习交流
1、不在3x+2y<6表示的平面区域内的点是 A. 0,0 B. 1,1 C. 0,2 D. 2,0
2、不等式组表示的平面区域是一个 A.三角形 B.直角梯形 C.梯形 D.矩形
3、原点O 0,0 与点集A= x,y |x+2y-1≥0,y≤x+2,2x+y-5≤0 的关系是________,点M 1,1 与集合A的关系是________.
【对、群学内容】
重难点探究
探究一、画不等式 组 表示的平面区域
1 在画二元一次不等式表示的平面区域时,应用“以线定界,以点定域”的方法画平面区域,先画Ax+By+C=0,再取点代入Ax+By+C验证.
2 在画二元一次不等式组表示的平面区域时,应先画出每个不等式表示的区域,再取它们的公共部分即可,其步骤为:①画线;②定侧;③求“交”;④表示.
画出下列不等式 组 表示的平面区域.
1 x-2y+4≥0; 2
探究二、求平面区域的面积
不等式组所表示的平面区域的面积等于 A. B. C. D.
【当堂检测】
不等式表示的区域在直线的( ) A、右上方 B、右下方 C、左上方 D、左下方
2、 不等式表示的区域是( )
3、不等式组表示的平面区域是( )
4、不在表示的平面区域内的点是( ) A、(0,0)B、(1,1) C、(0,2)D、(2,0)
不等式组表示的平面区域是一个( ) A、三角形 B、直角梯形 C、梯形 D、矩形
【巩固练习】课本的例题3
个性笔记 济南市长清中学 第 2 页 共 2 页
显示全部