三角函数复习专题三角函数复习专题.docx
文本预览下载声明
三角函数复习专题一、核心知识点归纳:★★★1、正弦函数、余弦函数和正切函数的图象与性质:函数性质 图象定义域值域最值当时,;当 时,.当时, ;当时,.既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在上是增函数;在上是减函数.在上是增函数;在上是减函数.在上是增函数.对称性对称中心对称轴对称中心对称轴对称中心无对称轴二、方法总结:1.三角函数恒等变形的基本策略。(1)注意隐含条件的应用:1=cos2x+sin2x。(2)角的配凑。α=(α+β)-β,β=-等。(3)升幂与降幂。主要用2倍角的余弦。(4)化弦(切)法,用正弦定理或余弦定理。(5)引入辅助角。asinθ+bcosθ=sin(θ+),这里辅助角所在象限由a、b的符号确定,角的值由tan=确定。2.解答三角高考题的策略。(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。(2)寻找联系:运用相关公式,找出差异之间的内在联系。(3)合理转化:选择恰当的公式,促使差异的转化。考点1 定义域与值域考点2 奇偶性、周期性与对称性考点3 单调性与最值 (1)比较三角函数值的大小:通常利用奇偶性或周期性转化为属于同一单调区间上的同名函数值,再利用单调性比较大小; (2)求三角函数的最值:利用函数在区间内的单调性; 3.有关三角函数的单调性问题,要求掌握基本的三角函数的单调区间,以及各个象限中四个三角函数的符号、特殊值所对应的角.要能全面地根据内、外层函数的单调性来确定复合函数的单调性或单调区间. 考点4.三角函数的图象和性质3.(2011年东城区期末文15)函数部分图象如图所示.(Ⅰ)求的最小正周期及解析式;(Ⅱ)设,求函数在区间上的最大值和最小值.考点5 角的变换与求值4.(2010年海淀期中文16)已知函数.(1)若,求的值;(2)求函数的单调增区间.(3)求函数的对称轴方程和对称中心
显示全部