数值分析实验作业matlab编程课题八.docx
文本预览下载声明
曲线拟合的最小二乘法1、%采用二次多项式拟合%a的输出为多项式各项系数%b为拟合曲线各点函数值%phi为输出的曲线拟合函数x=0:5:55;y=[0 1.27 2.16 2.86 3.44 3.87 4.15 4.37 4.51 4.58 4.02 4.64];a=polyfit(x,y,2)b=polyval(a,x)symstphi=a(1)*t^2+a(2)*t+a(3)运行结果: leastwaya = -0.0024 0.2037 0.2305b = Columns 1 through 5 0.2305 1.1894 2.0293 2.7502 3.3521 Columns 6 through 10 3.8349 4.1987 4.4435 4.5693 4.5760 Columns 11 through 12 4.4637 4.2324phi = 2 -0.00238051948051948162 t + 0.203690809190809258 t + 0.2304670329670317492、%采用三次多项式拟合x=0:5:55;y=[0 1.27 2.16 2.86 3.44 3.87 4.15 4.37 4.51 4.58 4.02 4.64];a=polyfit(x,y,3)b=polyval(a,x)symstphi=a(1)*t^3+a(2)*t^2+a(3)*t+a(4)运行结果: leastwaya = 0.0000 -0.0052 0.2634 0.0178b = Columns 1 through 5 0.0178 1.2087 2.1646 2.9113 3.4745 Columns 6 through 10 3.8800 4.1536 4.3211 4.4082 4.4407 Columns 11 through 12 4.4444 4.4450phi = 3 2 0.0000343641543641541613 t - 0.00521556221556219567 t + 0.263398527398526872 t + 0.01783882783883230383、%delta为拟合函数值与原函数值的误差clcclearx=0:5:55;y=[0 1.27 2.16 2.86 3.44 3.87 4.15 4.37 4.51 4.58 4.02 4.64];a=polyfit(x,y,3);b=polyval(a,x);for j=1:12 delta=b(j)-y(j)endsymstphi=a(1)*t^3+a(2)*t^2+a(3)*t+a(4)运行结果:delta = 0.0178delta = -0.0613delta = 0.0046delta = 0.0513delta = 0.0345delta = 0.0100delta = 0.0036delta = -0.0489delta = -0.1018delta = -0.1393delta = 0.4244delta = -0.1950phi = 3 2 0.0000343641543641541613 t - 0.00521556221556219567 t + 0.263398527398526872 t + 0.01783882783883230384、%采用四次多项式拟合与三次多项式拟合进行比较%输出其与原函数值的误差再与之前输出的三次与原函误差进行比较%delta4为四次与原函的误差clcclearx=0:5:55;y=[0 1.27 2.16 2.86 3.44 3.87 4.15 4.37 4.51 4.58 4.02 4.64];a=polyfit(x,y,4);b=polyval(a,x)for j=1:12 delta4=b(j)-y(j)endsymstphi=a(1)*t^4+a(2)*t^3+a(3)*t^2+a(4)*t+a(5)运行结果:b = Columns 1 through 5 0.0604 1.1739
显示全部