九年级下人教新课标第二十六章二次函数单元测试卷2.doc
文本预览下载声明
第26章 二次函数 单元测试卷
一、选择题:
1、二次函数y=x2-(12-k)x+12,当x1时,y随着x的增大而增大,当x1时,y随着x的增大而减小,则k的值应取( )
(A)12 (B)11 (C)10 (D)9
2、下列四个函数中,y的值随着x值的增大而减小的是( )
(A);(B);(C);(D)
3、已知二次函数y=ax2+bx的图象经过点A(-1,1),则ab有 ( )
(A)()1; ()2; ()
4、抛物线y=ax2+bx+c的图象如图,OA=OC,则( )
(A) ac+1=b; (B) ab+1=c;
(C)bc+1=a; (D)以上都不是
5、若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(-1,0), 则S=a+b+c的变化范围是 ( )
(A)0S2; (B) S1; (C) 1S2; (D)-1S1
6、如果抛物线y=x2-6x+c-2的顶点到x轴的距离是3,那么c的值等于( )
(A)()()()7、把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( )
(A); (B);
(C) (D)
8、(3)已知抛物线y=ax2+bx,当a0,b0时,它的图象经过( )
A.一、二、三象限 ; B.一、二、四象限;C.一、三、四象限; D.一、二、三、四象限.
9、若,则二次函数的图象的顶点在 ( )
(A)第一象限;(B)第二象限;(C)第三象限;(D)第四象限
10、已知二次函数 , 为常数,当y达到最小值时,x的值为( )(A); (B); (C); (D)
11、当a0, b0,c0时,下列图象有可能是抛物线y=ax2+bx+c的是( )
12、不论x为何值,函数y=ax2+bx+c(a≠0)的值恒大于0的条件是( )
A.a0,△0; B.a0, △0; C.a0, △0; D.a0, △0
二、填空题:
13、如图,已知点M(p,q)在抛物线y=x2-1上,以M为圆心的圆与x轴交于A、B两点,且A、B两点的横坐标是关于x的方程x2-2px+q=0的两根,则弦AB的长等于 。
14、设x、y、z满足关系式x-1==,则x2+y2+z2的最小值为 。
15、已知二次函数y=ax2(a≥1)的图像上两点A、B的横坐标分别是-1、2,点O是坐标原点,如果△AOB是直角三角形,则△OAB的周长为 。
16、已知二次函数y=-4x2-2mx+m2y=m的值是 。
17、已知二次函数 ,当x=_________时,函数达到最小值。
18、有一个抛物线形拱桥,其最大高度为16m,跨度为40m,现把它的示意图放在平面直角坐标系中如 图(4),求抛物线的解析式是_______________。
19、如图(5),A、B、C是二次函数y=ax2+bx+c(a≠0)的图像上三点,根据图中给出的三点的位置,可得a_______0,c________0, ⊿________0.
20、老师给出一个函数,甲,乙,丙,丁四位同学各指出这个函数的一个性质:
甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。
丙:当x<2时,y随x的增大而减小。丁:当x<2时,y>0,
已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数___________________。
21、已知二次函数y=x2+bx+c的图像过点A(c,0),且关于直线x=2对称,则这个二次函数的解析式可能是_____________________________________.(只要写出一个可能的解析式)
22、炮弹从炮口射出后,飞行的高度h(m)与飞行的时间t(s)之间的函数关系是h=v0tsinα—5t2,其中v0是炮弹发射的初速度, α是炮弹的发射角,当v0=300(), sinα=时,炮弹飞行的最大高度是___________。
23、抛物线y=-(x-L)(x-3-k)+L与抛物线y=(x-3)2+4关于原点对称,则L+k=________。
三、解答题:
23、已知二次函数y=x2+bx+c的图像与x轴的两个交点的横坐标分别为x1、x2,一元二次方程x2+b2x+20=0的两实根为x3、x4,且x2-x3=x1-x4=3,求二次函数的解析式,并写出顶点坐标。
24、2000年度东风公司神鹰汽车改装厂开发出A型农用车,其成本价为每辆2万元,出厂价为每辆2.4万元,年销售价为10000辆,2001年为了支援西部大开发的生态农业建设,该厂抓住机遇,发展企业,全面提高A型农用
显示全部