文档详情

3.3勾股定理的应用举例.ppt

发布:2017-03-26约小于1千字共11页下载文档
文本预览下载声明
. 问题的延伸: 如图,在棱长为10厘米的正方体的一个顶点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是1厘米\秒,且速度保持不变,问蚂蚁能否在20秒内从A爬到B? 问题的延伸: * * 勾股定理的应用举例 如图,有一个圆柱体,它的高等于12厘米,底面半径等于3厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的B处的食物,需要爬行的最短路程是多少? 问题的提出: 蛋糕 A B B B 12 A 蛋糕 A C B A A 蛋糕 B A B 做一做: 李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺, (1)你能替他想办法完成任务吗? (2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么? 做一做: 做一做: (3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢? 试一试: 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少? D A B C 解:设水池的水深AC为x尺,则这根芦苇长AD=AB=(x+1)尺, 在直角三角形ABC中,BC=5尺 由勾股定理得,BC2+AC2=AB2 即 52+ x2= (x+1)2 25+ x2= x2+2 x+1, 2 x=24, ∴ x=12, x+1=13 答:水池的水深12尺,这根芦苇长13尺。 *
显示全部
相似文档