2023-2024学年山东省菏泽市菏泽第一中学高三第二次联考数学试卷含解析.doc
2023-2024学年山东省菏泽市菏泽第一中学高三第二次联考数学试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量与的夹角为,,,则()
A. B.0 C.0或 D.
2.已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.已知的面积是,,,则()
A.5 B.或1 C.5或1 D.
4.等腰直角三角形BCD与等边三角形ABD中,,,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为()
A. B. C. D.
5.函数在的图像大致为
A. B. C. D.
6.大衍数列,米源于我国古代文献《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,…,则大衍数列中奇数项的通项公式为()
A. B. C. D.
7.如图,棱长为的正方体中,为线段的中点,分别为线段和棱上任意一点,则的最小值为()
A. B. C. D.
8.如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为()
A. B.
C. D.
9.已知数列是公比为的正项等比数列,若、满足,则的最小值为()
A. B. C. D.
10.已知函数,若关于的不等式恰有1个整数解,则实数的最大值为()
A.2 B.3 C.5 D.8
11.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为
A. B. C.2 D.
12.已知是的共轭复数,则()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设函数,若在上的最大值为,则________.
14.曲线f(x)=(x2+x)lnx在点(1,f(1))处的切线方程为____.
15.已知平面向量,,且,则向量与的夹角的大小为________.
16.已知数列的前项满足,则______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.
(1)求动点的轨迹的方程;
(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.
18.(12分)已知抛物线:()的焦点到点的距离为.
(1)求抛物线的方程;
(2)过点作抛物线的两条切线,切点分别为,,点、分别在第一和第二象限内,求的面积.
19.(12分)记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,.
(1)求抛物线的方程;
(2)若,直线与交于点,,求直线的斜率.
20.(12分)已知函数,其中.
(1)函数在处的切线与直线垂直,求实数的值;
(2)若函数在定义域上有两个极值点,且.
①求实数的取值范围;
②求证:.
21.(12分)的内角的对边分别为,若
(1)求角的大小
(2)若,求的周长
22.(10分)已知点,若点满足.
(Ⅰ)求点的轨迹方程;
(Ⅱ)过点的直线与(Ⅰ)中曲线相交于两点,为坐标原点,求△面积的最大值及此时直线的方程.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【解析】
由数量积的定义表示出向量与的夹角为,再由,代入表达式中即可求出.
【详解】
由向量与的夹角为,
得,
所以,
又,,,,
所以,解得.
故选:B
【点睛】
本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题.
2、D
【解析】
根据复数运算,求得,再求其对应点即可判断.
【详解】
,故其对应点的坐标为.
其位于第四象限.
故选:D.
【点睛】
本题考查复数的运算,以及复数对应点的坐标,属综合基础题.
3、B
【解析】
∵,,