基于残差卷积神经网络.docx
基于残差卷积神经网络
目录
基于残差卷积神经网络(1)..................................4
一、内容简述...............................................4
1.1深度学习发展现状.......................................5
1.2残差卷积神经网络概述...................................6
1.3研究目的及价值.........................................7
二、残差卷积神经网络原理...................................7
2.1神经网络基本原理.......................................8
2.2残差网络结构..........................................10
2.3卷积神经网络概述......................................10
2.4残差卷积神经网络结构..................................12
三、基于残差卷积神经网络的模型设计........................13
3.1模型架构..............................................14
3.2输入输出设计..........................................15
3.3关键层设计............................................16
3.4模型优化策略..........................................17
四、模型训练与实现........................................19
4.1数据集准备............................................20
4.2训练流程..............................................21
4.3模型评估指标..........................................22
4.4实验结果与分析........................................23
五、残差卷积神经网络的应用................................24
5.1图像识别..............................................26
5.2目标检测..............................................27
5.3语义分割..............................................28
5.4其他应用领域..........................................29
六、残差卷积神经网络的改进与发展..........................30
6.1现有问题与挑战........................................31
6.2改进方向及策略........................................33
6.3未来发展趋势..........................................34
七、结论与展望............................................36
7.1研究成果总结..........................................36
7.2实际应用前景展望......................................37
基于残差卷积神经网络(2).................................38
内容综述...............................................38
1.1研究背景..............................................39
1.2研究目的..............................................40
1.3文档结构..............................................41
相关技术