基于卷积神经网络和残差结构单元的合同数据识别提取.docx
基于卷积神经网络和残差结构单元的合同数据识别提取
目录
1.内容简述................................................2
1.1研究背景.............................................2
1.2研究意义.............................................3
1.3文献综述.............................................4
2.相关技术介绍............................................6
2.1卷积神经网络.........................................7
2.1.1CNN基本结构......................................8
2.1.2CNN工作原理......................................9
2.2残差结构单元........................................10
2.2.1ResNet结构特点..................................11
2.2.2ResNet在图像识别中的应用........................12
3.合同数据识别提取方法...................................14
3.1数据预处理..........................................15
3.1.1数据清洗........................................16
3.1.2数据增强........................................17
3.2网络结构设计........................................17
3.2.1卷积层设计......................................18
3.2.2残差单元设计....................................20
3.3损失函数与优化器....................................21
3.3.1损失函数........................................22
3.3.2优化器选择......................................22
4.实验与结果分析.........................................23
4.1实验环境............................................25
4.2数据集介绍..........................................25
4.3实验步骤............................................26
4.4结果分析............................................27
4.4.1模型性能评估....................................28
4.4.2消融实验........................................29
5.应用案例分析...........................................31
5.1案例一..............................................32
5.2案例二..............................................34
5.3案例三..............................................36
6.结论与展望.............................................37
6.1研究结论............................................37
6.2存在问题与挑战......................................38
6.3未来研究方向..