文档详情

线性规划与Excel求解.doc

发布:2018-02-01约2.78千字共4页下载文档
文本预览下载声明
精品论文 参考文献 线性规划与Excel求解 刘连香 陈鑫源(江西城市职业学院,江西 南昌 330077) 中图分类号: F224.31 文献标识码:A 文章编号:1003-2738(2012)02-00200-01 摘要:在生产管理和经营活动中,经常遇到如何合理地利用有限资源,以达到我们最理想的结果,即线性规划问题。随着数学的发展,线性规划模型可以有Matlab、LINDO等软件求解,但是这些软件都过于专业化,而且占用空间大,对一般的工作人员来说不太实用,下面以简单的实际问题为例介绍用Excel软件求解该模型的方法。 关键词:线性规划;数学模型;Excel 一般地,线性模型的可表述为如下形式:* 在优化模型中,如果目标函数 和约束条件中的 都是线性函数,则该模型称为线性规划。目标函数或者约束条件中至少有一个是非线性函数的最优化问题叫做非线性规划问题。下面分别举例介绍,并给出Excel求解过程。 一、线性规划模型求解 例1:需求最省运费方案 现要从两个仓库(发点)运送库存原棉来满足3个纺织厂的需要,数据如下表,试问在保证各纺织厂的需求都得到满足的条件下应采取哪个运输方案,才能使总运费最省?(运价(元/t)如下表) 工厂1 工厂2 工厂3 库存量/t 仓库1号 2 1 3 50 仓库2号 2 2 4 30 需求量/t 40 15 25 模型建立于求解:依题意即要确定从i号仓库运到j号工厂的原棉数量,故设 表示从i号仓库运到j号工厂的原棉数量(t),f表示总运费,则总运费为: 下面介绍用Excel来求解以上线性规划模型的解: 打开Excel的一个工作簿,把模型的约束系数矩阵置于A1至F5中,约束常数置于H1至H5中,而目标函数系数置于A6至F6中。选择A8至F8为“可变单元”(即相对于变量 ),并输入初值0,如左图所示。 在单元格G1处输入“=A1*A8+B1*B8+C1*C8+D1*D8+E1*E8+F1*F8”,即第一个约束不等式的左边;类似对G2,G3,G4,G5做处理,即完成约束条件的左边表达式的输入;以单元格G6为目标单元格,输入“=A6*A8+B6*B8+C6*C8+D6*D8+E6*E8+F6*F8”。 打开菜单的“工具”项,在下拉菜单中选择“规划求解”。在“设置目标单元格”中输入“G6”,再选“最小值”,再“可变单元格中”输入“A8:F8”,在“约束”中按一下“添加”按钮,把六个条件填好,再进入“选项”,选择“采用线性模型”,再按“求解”按钮即可获得结果。 这时即可从A1至F8中读出模型的最优解为: 即从1号仓库分别运10t、15t、25t到一、二、三号工厂;从2号仓库运30t到一号厂时总运费最省,为170元。 例2:汽车厂生产计划问题 一汽车厂生产小、中、大三种类型的汽车,已知各类型每辆车对钢材、劳动时间的需求,利润以及每月工厂钢材、劳动时间的现有量如下表所示。试制订月生产计划,使工厂的利润最大。 小型 中型 大型 现有量 钢材(吨) 1.5 3 5 600 劳动时间(小时) 280 250 400 60000 利润(万元) 2 3 4 模型建立与求解: 设每月生产小、中、大型汽车的数量分别为 , , ,工厂的月利润为 ,很容易得到可得线性规划模型为: 类似例1的步骤打开一个Excel工作簿,在A1至C3单元格内输入相关数据;在D1输入“=A1*A5+B1*B5+C1*C5”,类似对D2,D3做处理;选择“工具”中的“规划求解”,选D3为目标单元格,选“最大值”,再设定“可变单元格为”A5:C5,再按例1方法输入约束
显示全部
相似文档