文档详情

《弹性力学》试题参考答案与弹性力学复习题(文档).doc

发布:2025-03-21约5.75千字共38页下载文档
文本预览下载声明

第PAGE1页(共NUMPAGES1页)

弹性力学复习资料

一、简答题

1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?

答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程

中包含着三个未知函数(TX、(Ty、Txy=Tyx,因此,决定应力分量的问题是超静定的,还必须考虑

形变和位移,才能解决问题。

空+竺5

①Gy

dcr^8J

丄+—^+y=0o

9,%

:揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确反之,当形变分量完全确定时,位移分量却不能完全确定。

平面问题中的物理方程:变问题物理方程的转换关系。

“診-心+耳)]

*耳巧-心+碍)]爲=耳%-口.+巧)

711

Fje-石£严EG球一石

2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和

混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应

力边界条件。

3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。如何确定它们的正负号?

答:弹性体任意一点的应力状态由6个应力分量决定,它们是:ex、cy、GZ、欲y、如、、耘X。正面上的应力

以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。

答:答:在推导弹性力学基本方程时,采用了以下基本假定:

(1)

(2)

(3)

(4)

(5)符合

弹性体”。

5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中的实例。

答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板支墩就属于此类。

平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作用都不沿长度而变化。

6.在弹性力学里分析问题,要从几方面考虑?各方面反映的是那些变量间的关系?

答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。

平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的

关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之间的关系,也就是平面问题中的物理方程。

7.按照边界条件的不同,弹性力学平面问题分为那几类?试作简要说明答:按照边界条件的不同,弹性力学平面问题可分为两类:

(1)平面应力问题:很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存在

J匚y、Txy=Sx三个应力分量。

(2)平面应变问题:很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,而且体力也平行于横截面且不沿长度变化。这一类问题可以简化为平面应变问题。例如挡土墙和重力坝的受力分析。

Tq=Tzx=0;Tyz=Tzy=0而一般bz并不等于零。

8什么是圣维南原理?其在弹性力学的问题求解中有什么实际意义?

圣维南原理可表述为:

如果把物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那麽近处的应力分布将有显著的改变,但远处所受的影响可以不计.

弹性力学的问题求解中可利用圣维南原理将面力分布不明确的情况转化为静力等效但分布表达明确的情况而将问题解决。还可解决边界条件不完全满足的问题的求解。

9.什么是平面应力问题?其受力特点如何,试举例予以说明。

答:平面应力问题是指很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力,这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存在

bx、by、Txy=Tyx三个应力分量。

10.什么是“差分法”?试写出基本差分公式。

答;所谓差分法,是把基本方程和边界条件(一般为微分方程)近似地改用差分方程(代数方程)来表示,把求解微分方程的问题改换成为求解代数方程的问题。基本差分公式如下:

1

显示全部
相似文档