陕西省西安市2025届高三下学期阶段性测试(四)数学试题含解析.doc
陕西省西安市2025届高三下学期阶段性测试(四)数学试题
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在区间上随机取一个实数,使直线与圆相交的概率为()
A. B. C. D.
2.等比数列中,,则与的等比中项是()
A.±4 B.4 C. D.
3.双曲线的渐近线方程为()
A. B. C. D.
4.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是()
A. B. C.10 D.
5.若函数在处取得极值2,则()
A.-3 B.3 C.-2 D.2
6.已知集合,,则()
A. B. C. D.
7.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是()
A.甲班的数学成绩平均分的平均水平高于乙班
B.甲班的数学成绩的平均分比乙班稳定
C.甲班的数学成绩平均分的中位数高于乙班
D.甲、乙两班这5次数学测试的总平均分是103
8.若复数()在复平面内的对应点在直线上,则等于()
A. B. C. D.
9.设等差数列的前n项和为,且,,则()
A.9 B.12 C. D.
10.已知正四面体外接球的体积为,则这个四面体的表面积为()
A. B. C. D.
11.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},则下列结论正确的是()
A.﹣3∈AB.3BC.A∩B=BD.A∪B=B
12.某四棱锥的三视图如图所示,则该四棱锥的表面积为()
A.8 B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.抛物线上到其焦点的距离为的点的个数为________.
14.的展开式中常数项是___________.
15.已知全集,,则________.
16.已知为双曲线:的左焦点,直线经过点,若点,关于直线对称,则双曲线的离心率为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆经过点,离心率为.
(1)求椭圆的方程;
(2)经过点且斜率存在的直线交椭圆于两点,点与点关于坐标原点对称.连接.求证:存在实数,使得成立.
18.(12分)已知矩形纸片中,,将矩形纸片的右下角沿线段折叠,使矩形的顶点B落在矩形的边上,记该点为E,且折痕的两端点M,N分别在边上.设,的面积为S.
(1)将l表示成θ的函数,并确定θ的取值范围;
(2)求l的最小值及此时的值;
(3)问当θ为何值时,的面积S取得最小值?并求出这个最小值.
19.(12分)已知动圆E与圆外切,并与直线相切,记动圆圆心E的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点的直线l交曲线C于A,B两点,若曲线C上存在点P使得,求直线l的斜率k的取值范围.
20.(12分)在直角坐标系中,曲线的参数方程为(为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)写出的极坐标方程与直线的直角坐标方程;
(2)曲线上是否存在不同的两点,(以上两点坐标均为极坐标,,),使点、到的距离都为3?若存在,求的值;若不存在,请说明理由.
21.(12分)如图,在四棱锥中,底面是矩形,四条侧棱长均相等.
(1)求证:平面;
(2)求证:平面平面.
22.(10分)如图,在直三棱柱中,,点分别为和的中点.
(Ⅰ)棱上是否存在点使得平面平面?若存在,写出的长并证明你的结论;若不存在,请说明理由.
(Ⅱ)求二面角的余弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.D
【解析】
利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.
【详解】
由于直线与圆相交,则,解得.
因此,所求概率为.
故选:D.
本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.
2.A
【解析】