文档详情

2024-2025学年重庆市实验中学7年级数学下册第一章整式的乘除同步测试试题(解析版).docx

发布:2025-04-25约5.36千字共19页下载文档
文本预览下载声明

重庆市实验中学7年级数学下册第一章整式的乘除同步测试

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题20分)

一、单选题(10小题,每小题2分,共计20分)

1、要使是完全平方式,那么的值是()

A. B. C. D.

2、下列运算正确的是()

A. B. C. D.

3、已知并排放置的正方形和正方形如图,其中点在直线上,那么的面积和正方形的面积的大小关系是()

A. B. C. D.

4、下列计算正确的是()

A.a3·a2=a B.a3·a2=a5 C.a3·a2=a6 D.a3·a2=a9

5、的值是()

A. B. C. D.

6、下列计算正确的是()

A. B.

C. D.

7、下列计算正确的是()

A.x2?x4=x6 B.a0=1

C.(2a)3=6a3 D.m6÷m2=m3

8、下列计算正确的是()

A. B. C. D.

9、已知,m,n均为正整数,则的值为().

A. B. C. D.

10、如图,若将①中的阴影部分剪下来,拼成图②所示的长方形,比较两图阴影部分的面积,可以得到乘法公式的是()

A. B.

C. D.

第Ⅱ卷(非选择题80分)

二、填空题(10小题,每小题2分,共计20分)

1、(﹣2)0+3﹣2=_____.

2、若,,则的值为________.

3、(﹣2021)0=_____.

4、计算:________________.

5、若(x+2)(x+a)=x2+bx﹣8,则ab的值为_____.

6、若,,则______.

7、计算:__________.

8、用科学记数法表示0________.

9、已知,,则______.

10、若(x2+y2+1)(x2+y2﹣1)=48,则x2+y2=___

三、解答题(6小题,每小题10分,共计60分)

1、阅读下列材料:

利用完全平方公式,可以把多项式变形为的形式.例如,==.

观察上式可以发现,当取任意一对互为相反数的值时,多项式的值是相等的.例如,当=±1,即=3或1时,的值均为0;当=±2,即=4或0时,的值均为3.

我们给出如下定义:

对于关于的多项式,若当取任意一对互为相反数的值时,该多项式的值相等,则称该多项式关于=对称,称=是它的对称轴.例如,关于=2对称,=2是它的对称轴.

请根据上述材料解决下列问题:

(1)将多项式变形为的形式,并求出它的对称轴;

(2)若关于的多项式关于=-5对称,则=;

(3)代数式的对称轴是=.

2、王老师在黑板上写下了四个算式:

①;

②;

③;

④;

……

认真观察这些算式,并结合你发现的规律,解答下列问题:

(1);.

(2)小华发现上述算式的规律可以用文字语言概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为2n+1和2n-1(n为正整数),请你用含有n的算式验证小华发现的规律.

3、计算(3a﹣b)(a+b)+(2a+3b)(2a﹣7b).

4、计算:

5、若,求的值.

6、计算:.

-参考答案-

一、单选题

1、A

【分析】

根据完全平方公式:进行求解即可.

【详解】

∵是完全平方式,

∴,

解得:,

故选:A.

【点睛】

本题考查了完全平方式,解题的关键是掌握常数项是一次项系数一半的平方.

2、C

【分析】

利用同底数幂乘法运算法则、积的乘方运算法则、去括号法则、合并同类项法则逐项判断解答即可.

【详解】

解:A、,故A选项错误,不符合题意;

B、,故B选项错误,不符合题意;

C、,故C选项正确,符合题意;

D、,故D选项错误,不符合题意,

故选:C.

【点睛】

本题考查同底数幂相乘、积的乘方运算、去括号、合并同类项,熟练掌握运算法则是解答的关键.

3、A

【分析】

设正方形ABCD和正方形BEFG的边长分别为m、n,利用面积和差求出面积即可判断.

【详解】

解:设正方形ABCD和正方形BEFG的边长分别为m、n,

S1=S正方形ABCD+S正方形BEFG﹣(S△ADE+S△CDG+S△GEF)

=m2+n2﹣[m(m+n)+m(m﹣n)+n2]

=n2;

∴S1=S2.

故选:A.

【点睛】

本题主要考查整式的混合运算,解题的关键是熟练用面积和差求三角形

显示全部
相似文档