天津市塘沽一中2025届高考考前信息卷高考数学试题含解析.doc
天津市塘沽一中2025届高考考前信息卷高考数学试题
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线:的焦点为,,且上点满足,,,则双曲线的离心率为
A. B. C. D.5
2.已知定义在上的偶函数,当时,,设,则()
A. B. C. D.
3.某几何体的三视图如图所示,则该几何体的体积是()
A. B. C. D.
4.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到次结束为止.某考生一次发球成功的概率为,发球次数为,若的数学期望,则的取值范围为()
A. B. C. D.
5.已知实数、满足不等式组,则的最大值为()
A. B. C. D.
6.高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为()
A.40 B.60 C.80 D.100
7.已知菱形的边长为2,,则()
A.4 B.6 C. D.
8.是的()
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
9.如下的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为176,320,则输出的a为()
A.16 B.18 C.20 D.15
10.将函数向左平移个单位,得到的图象,则满足()
A.图象关于点对称,在区间上为增函数
B.函数最大值为2,图象关于点对称
C.图象关于直线对称,在上的最小值为1
D.最小正周期为,在有两个根
11.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?()
A. B. C. D.
12.设全集,集合,,则()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求详见选票.这3名候选人的得票数(不考虑是否有效)分别为总票数的88%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为百分之________.
“我身边的榜样”评选选票
候选人
符号
注:
1.同意画“○”,不同意画“×”.
2.每张选票“○”的个数不超过2时才为有效票.
甲
乙
丙
14.设等差数列的前项和为,若,,则______,的最大值是______.
15.根据如图所示的伪代码,若输入的的值为2,则输出的的值为____________.
16.已知,满足,则的展开式中的系数为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数,.
(1)求证:在区间上有且仅有一个零点,且;
(2)若当时,不等式恒成立,求证:.
18.(12分)已知函数,其中e为自然对数的底数.
(1)讨论函数的单调性;
(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.
19.(12分)在直角坐标系中,曲线的参数方程为:(其中为参数),直线的参数方程为(其中为参数)
(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程;
(2)若曲线与直线交于两点,点的坐标为,求的值.
20.(12分)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.
晋级成功
晋级失败
合计
男
16
女
50
合计
(1)求图中的值;
(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?
(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望.
(参考公式:,其中)
0.4