最新苏教版五年级下册数学知识点总结 .pdf
精品文档
第一单元简易方程
1、表示相等关系的式子叫做等式。含有未知数的等式是方程。
例:x+50=150、2x=200
2、方程一定是等式;等式不一定是方程。
3、等式的性质:
①等式两边同时加上或减去同一个数,所得结果仍然是等式。
②等式两边同时乘或除以同一个不等于0的数,所得的结果任然是等式。
4、使方程左右两边相等的未知数的值叫做方程的解。求方程中未知数的过程,叫做解
方程。
5、解方程
60-4X=20,
解4X=60-20
4X=40
X=10
检验:把X=10代入原方程,左边=60-4×10=20,右边=20,左边=右边,所以X=10是原
方程的解。
6、解方程时常用的关系式:
一个加数=和-另一个加数一个因数=积÷另一个因数
减数=被减数-差被减数=减数+差
除数=被除数÷商被除数=商×除数
7、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
8、四个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数
的和×个数÷2(高斯求和公式)
9、列方程解应用题的思路:
精品文档
精品文档
A、审题并弄懂题目的已知条件和所求问题,
B、理清题目的等量关系,
C、设未知数,一般是把所求的数用X表示,
D、根据等量关系列出方程,
E、解方程,
F、检验,
G、作答。
注意:解完方程,要养成检验的好习惯。
第二单元折线统计图
1、复式折线统计图
从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相
关数据进行比较。
2、作复式折线统计图步骤:
①写标题和统计时间;
②注明图例(实线和虚线表示);
③分别描点、标数;
④实线和虚线的区分(画线用直尺)。
注意:先画表示实线的统计图,再画虚线统计图。不能同时描点画线,以免混淆。(也可
以先画虚线的统计图)
第三单元因数和倍数
1、几个非零自然数相乘,每个自然数都叫它们积的因数,积是这几个自然数的倍数。因
数与倍数是相互依存绝不能孤立的存在.
2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。(找因
数的方法:成对的找。)
3、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。(找一
个数倍数的方法:从自然数1、2、3、……分别乘这个数)
4、一个数最大的因数等于这个数最小的倍数。
5、按照一个数因数个数的多少可以把非0自然数分成三类
①只有自己本身一个因数的1
精品文档
精品文档
②只有1和它本身两个因数的数叫作质数(素数)。最小的质数是2。在所有的质数中,
2是唯一的一个偶数。
③除了1和它本身两个因数还有别的因数的数叫作合数。(合数至少有3个因数)最小
的合数是4。
按照是否是2的倍数可以把自然数分成两类偶数和奇数。最小的偶数是0.
6、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大
公因数,用符号(,)。两个数的公因数也是有限的。公因数只有1的两个数叫作互质
数
7、两个数公有的倍数,叫做这两个数的公倍数,其中最小的一个,叫做这两个数的最小
公倍数,用符号[,]表示。两个数的公倍数也是无限的。
8、两个素数的积一定是合数。举例:3×5=15,15是合数。
9、两个数的最小公倍数一定是它们的最大公因数的倍数。
举例:[6,8]=24,(6,8)=2,24是2的倍数。
10、求最大公因数和最小公倍数的方法:(列举法、图示法、短除法)
①倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
举例:1