2023年浙江省杭州市中考数学微专题六:圆.docx
微专题六:圆
选择题
1.(圆中三角函数)如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为()
A.cosθ(1+cosθ) B.cosθ(1+sinθ)
C.sinθ(1+sinθ) D.sinθ(1+cosθ)
2.(圆中切线问题)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=()
A.2 B.3 C.4 D.5
3.(圆中角度问题)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()
A.3α+β=180° B.2α+β=180° C.3α﹣β=90° D.2α﹣β=90°
填空题
1.(圆中折叠)如图是以点O为圆心,AB为直径的圆形纸片,点C在⊙O上,将该圆形纸片沿直线CO对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E.若AD=ED,则∠B=度;的值等于.
2.(圆的切线)如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC=.
3.(圆的切线)如图,已知⊙O的半径为1,点P是⊙O外一点,且OP=2.若PT是⊙O的切线,T为切点,连结OT,则PT=.
三.解答题
1.(圆的综合)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.
(1)若∠BAC=60°,
①求证:OD=OA.
②当OA=1时,求△ABC面积的最大值.
(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.
2.(圆的综合)如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.
(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.
(2)连接BF,DF,设OB与EF交于点P,
①求证:PE=PF.
②若DF=EF,求∠BAC的度数.
3.(圆的综合)如图,锐角三角形ABC内接于⊙O,∠BAC的平分线AG交⊙O于点G,交BC边于点F,连接BG.
(1)求证:△ABG∽△AFC.
(2)已知AB=a,AC=AF=b,求线段FG的长(用含a,b的代数式表示).
(3)已知点E在线段AF上(不与点A,点F重合),点D在线段AE上(不与点A,点E重合),∠ABD=∠CBE,求证:BG2=GE?GD.