《椭圆的几何性质》教学课件1 (1).ppt
椭圆的几何性质
复习:1.椭圆的定义:到两定点F1、F2的距离和为常数(大于|F1F2|)的点的轨迹叫做椭圆。2.椭圆的标准方程是:3.椭圆中a,b,c的关系是:a2=b2+c2
一、椭圆的范围oxy由即说明:椭圆位于矩形之中。
二、椭圆的对称性在之中,把x换成-x,方程不变,说明:椭圆关于x轴对称;同理:椭圆关于y轴对称;椭圆关于原点对称;故,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。中心:椭圆的对称中心叫做椭圆的中心oxy
三、椭圆的顶点在中,令x=0,得y=?,说明椭圆与y轴的交点?令y=0,得x=?,说明椭圆与x轴的交点?*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。oxyB2(0,b)B1(0,-b)A1A2*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。a、b分别叫做椭圆的长半轴长和短半轴长。
四、椭圆的离心率oxy离心率:椭圆的焦距与长轴长的比:叫做椭圆的离心率。[1]离心率的取值范围:1)e越接近1,c就越接近a,从而b就越小,椭圆就越扁.因为ac0,所以1e0[2]离心率对椭圆形状的影响:2)e越接近0,c就越接近0,从而b就越大,椭圆就越圆.3)特例:e=0,则a=b,则c=0,两个焦点重合,椭圆变成圆.
[1]椭圆标准方程所表示的椭圆的存在范围是什么?[2]上述方程表示的椭圆有几个对称轴?几个对称中心?[3]椭圆有几个顶点?顶点是谁与谁的交点?[4]对称轴与长轴、短轴是什么关系?[5]2a和2b是什么量?a和b是什么量?[6]关于离心率讲了几点?思考
标准方程图象范围对称性顶点坐标焦点坐标半轴长焦距a,b,c关系离心率|x|≤a,|y|≤b|x|≤b,|y|≤a关于x轴、y轴成轴对称;关于原点成中心对称。(±a,0),(0,±b)(±b,0),(0,±a)(±c,0)(0,±c)长半轴长为a,短半轴长为b.焦距为2c;a2=b2+c2
例1:已知椭圆方程为16x2+25y2=400.它的长轴长是:。短轴长是:。焦距是:。离心率等于:。焦点坐标是:。顶点坐标是:__。外切矩形的面积等于:。108680
练习:已知椭圆方程为6x2+y2=6?解析:把方程化成标准方程的形式。注意焦点在y轴上。?2?????
课下思考:已知椭圆的方程为x2+a2y2=a(a0且a1)它的长轴长是:;短轴长是:;焦距是:;离心率等于:;焦点坐标是:;顶点坐标是:;外切矩形的面积等于:;当a1时:。。。。。。。当0a1时
小结:基本元素oxyB1(0,b)B2(0,-b)A1A2{1}基本量:a、b、c、e、(共四个量){2}基本点:顶点、焦点、中心(共七个点){3}基本线:对称轴、准线(共四条线)请考虑:基本量之间、基本点之间、基本线之间以及它们相互之间的关系(位置、数量之间的关系)
作业: