[第11讲]典型环节的伯特图极坐标图.ppt
文本预览下载声明
第11讲程向红
典型环节的
伯特图极坐标图
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
第5章 线性系统的频域分析法
Frequency-response analysis
应用频率特性研究线性系统的经典方法称为频域分析法。
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
(1)频率特性具有明确的物理意义,它可以用实验的方法来确定,这对于难以列写微分方程式的元部件或系统来说,具有重要的实际意义。
(2)由于频率响应法主要通过开环频率特性的图形对系统进行分析,因而具有形象直观和计算量少的特点。
(3)频率响应法不仅适用于线性定常系统,而且还适用于传递函数不是有理数的纯滞后系统和部分非线性系统的分析。
特点
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
5.1频率特性及其表示法
5.1.1 频率特性的基本概念
频率特性又称频率响应,它是系统(或元件)对不同频率正弦输入信号的响应特性。
输出的振幅和相位一般均不同于输入量,且随着输入信号频率的变化而变化
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
Sinresponse2order.m
Sinresponse2orderb.m
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
设系统的传递函数为
已知输入
其拉氏变换
A为常量,则系统输出为
(5-1)
G(s)
的极点
(5-2)
对稳定系统
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
Evaluation only.
Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0.
Copyright 2004-2011 Aspose Pty Ltd.
(5-2)
趋向于零
待定系数
由于
是一个复数向量,因而可表示为
(5-7)
(5-5)
(5-6)
(5-4)
Evaluation only.
Created with Aspose.Slides f
显示全部