《最优化理论与方法.doc
文本预览下载声明
课程报告
题 目 最优化理论与方法
学生姓名
学 号
院 系
专 业
二O一二年十一月十日
最优化理论与方法综述
最优化方法是近几十年形成的,它主要运用研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。
最优化学习的必要性
最优化,在热工控制系统中应用非常广泛。为了达到最优化目的所提出的各种求解方法。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大,或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。
不同类型的最优化问题可以有不同的最优化方法,即使同一类型的问题也可有多种最优化方法。反之,某些最优化方法可适用于不同类型的模型。最优化问题的求解方法一般可以分成解析法、直接法
直接法
当目标函数较为复杂或者不能用变量显函数描述时,无法用解析法求必要条件。此时可采用直接搜索的方法经过若干次迭代搜索到最优点。这种方法常常根据经验或通过试验得到所需结果。对于一维搜索(单变量极值问题),;对于多维搜索问题(多变量极值问题)。
黄金分割法是一维搜索方法,只针对一元函数来求解。黄金分割法的局限性在于要求是单峰函数,所以要先用进退法找到一个函数的其中一个单峰。步骤就是在区间[a,b]中取点x1=a+0.382(b-a),x2=a+0.618(b-a),如果f(x1)f(x2),说明选取的步长太小,要扩大,令a=x1,x1=x2,再求新的x2;如果f(x1)=f(x2),步长选取过大,缩小步长,令b=x2,x2=x1,再求新的x1,循环。这样做每次可将搜索区间缩小0.382倍或0.618倍,直至缩为最小点。该算法为收敛速度很快的一维搜索方法。前提是要先利用进退法选择一个下降的单峰区间(即黄金分割法的单峰搜索区间)。
②进退法
用进退法来确定下单峰区间,即黄金分割法的搜索区间。
线性规划问题
单纯形法对于一般形式的线性规划问题,引入松弛变量或者剩余变量来化为标准型,可以将引入的变量作为初始基变量,该基变量对应的单位阵可以作为一个初始基可行解,然后进行单纯形法求解过程。如果线性规划是非退化的,则按照进基,离基迭代一次后,目标函数值有所下降.经过有限次迭代之后,一定可以得到一个基可行解,(得到最优解),或者其有一个判别数是负的,有分量非正()。
而对于一般标准型的线性规划问题,约束方程组的系数矩阵中不包含单位阵,从而需要引入人工变量,构造一个单位矩阵,得到初始基可行解的方法。而利用单纯形法求解问题最关键的环节是初始基可行解的求解,因为单纯形法的迭代过程是在已有一个初始基可行解的前提下进行的,而常用的方法有两种,一是大M法,二是两阶段法。
①大M单纯形法,其中M定义为一个比较大的数,通常比系数矩阵中的系数大一个数量级,与引入的人工变量结合构造辅助线性规划问题,从而也在系数矩阵中构造出了单位阵,对应的变量值作为一组初始基可行解进行单纯形法的迭代运算。在取得的最优解中人工变量全为零,即M的引入不影响目标函数的最优解。
②对偶单纯形法,单纯形法与对偶单纯形法是对偶的可以互相转换可以简化求解过程,而对偶之间只有最优解是相等的。单纯形法保证解可行,而对偶单纯形法保证对偶规划解可行。不同点在于对偶单纯形法的最优性判别是已知线性规划问题的基矩阵B及它所对应的基解的所有的判别数非负(即XB=B-1b=0)时有最优解。对偶单纯形法并不是解对偶线性规划问题的单纯形法,而是根据对偶原理求解原线性规划问题的另一种单纯形法。
无约束最优化问题
解析法只适用于目标函数有明显的解析表达式的情况。求解方法是:先求出最优的必要条件,得到一组方程或不等式,再求解这组方程或不等式,一般是用求导数的方法求出必要条件,通过必要条件将问题简化,因此也称间接法。newton法、共轭梯度法、拟newton法等。
最速下降法是求梯度的方法中效率最低的方法,它所
显示全部