17.1.2勾股定理的实际应用.ppt
文本预览下载声明
* (1)求出下列直角三角形中未知的边. 6 10 A C B 8 A 15 C B 练 习 30° 2 2 45° 活 动 2 例1 一个门框尺寸如下图所示. ①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过? ②若薄木板长3米,宽1.5米呢? ③若薄木板长3米,宽2.2米呢?为什么? A B C 1 m 2 m ∵木板的宽2.2米大于1米, ∴ 横着不能从门框通过; ∵木板的宽2.2米大于2米, ∴竖着也不能从门框通过. ∴ 只能试试斜着能否通过,对角线AC的长最大,因此需要求出AC的长,怎样求呢? 练习:有一个边长为50dm 的正方形洞口,想用一个圆盖去盖住这个洞口,圆的直径至少多长?(结果保留整数) 50dm A B C D 解:∵在Rt△ ABC中,∠B=90°, ∴由勾股定理可知: . 练习:如图,一个25米长的梯子AB, 斜着靠在竖直 的墙AO上,这时BO的距离为7米. ①求梯子的顶端A距墙角O多少米? ②如果梯子的顶端A沿墙角下滑17米至C,请同学们: 猜一猜,底端也将向外滑动17米吗? 例2:一个2.5m长的梯子AB斜靠在一竖直的墙AC上,这时AC的距离为2.4m.如果梯子顶端A沿墙下滑0.4m,那么梯子底端B也外移0.4吗? 练习:如图,铁路上A,B两点相距25km,C,D为两庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处? C A E B D x 25-x 解:设AE= x km, 根据勾股定理,得 AD2+AE2=DE2 BC2+BE2=CE2 又 ∵ DE=CE ∴ AD2+AE2= BC2+BE2 即:152+x2=102+(25-x)2 答:E站应建在离A站10km处。 ∴ X=10 则 BE=(25-x)km 15 10 1.如图,受台风影响,一棵树在离地面4米处断裂,树的顶部落在离树跟底部3米处,这棵树折断前有多高? 应用知识回归生活 4米 3米
显示全部