高等数学方明亮版数学课件 对坐标的曲面积分.ppt
文本预览下载声明
第五节 对坐标的曲面积分 一、对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算 内容小结 思考与练习 返回 上页 下页 目录 新课引入 前面我们讲述了两类曲线积分: 弧长曲线积分(第一类) 坐标曲线积分(第二类)。 上一节我们讲述了对面积的曲面积分, 这一节我们就来讲对坐标的曲面积分。 同样我们也要讲述两类曲面积分: 对面积的曲面积分(第一类) 对坐标的曲面积分(第二类)。 第九章 (Surface integral of coordinate) 一、对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算 三、两类曲面积分之间的联系 四、小结与思考练习 1. 有向曲面及其在坐标面上的投影概念 观察以下曲面的侧 (假设曲面是光滑的) 曲面分上侧和下侧 曲面分内侧和外侧 以后如未作特别说明,我们所讨论的曲面都是双侧的. 曲面法向量的指向决定曲面的侧. 决定了侧的曲面称为有向曲面. 曲面的投影问题: 2. 流向曲面一侧的流量计算 1. 分割 则该点流速为 . 法向量为 . 2. 求和 3.取极限 3. 对坐标的曲面积分的概念 被积函数 积分曲面 类似可定义 存在条件: 组合形式: 物理意义: 4. 对坐标的曲面积分的性质 三、两类曲面积分之间的联系 1. 对坐标曲面积分的物理意义 2. 对坐标曲面积分的计算时应注意以下两点 a. 曲面的侧 b. “一投,二代,三定号” 课外练习 习题9-5 1 ; 2 (奇数题) ;3 * * * * 返回 上页 下页 目录
显示全部