高考数学一轮复习《概率》教案.doc
文本预览下载声明
PAGE
PAGE - 4 -
用心 爱心 专心
福建省长泰一中高考数学一轮复习《概率》教案
考纲导读
概率
随机事件的概率
等可能事件的概率
互斥事件的概率
相互独立事件的概率
应用
知识网络
高考导航
概率则是概率论入门,目前的概率知识只是为进一步学习概率和统计打好基础,做好铺垫.学习中要注意基本概念的理解,要注意与其他数学知识的联系,要通过一些典型问题的分析,总结运用知识解决问题的思维规律.纵观近几年高考,概率的内容在选择、填空解答题中都很有可能出现。
第1课时 随机事件的概率
基础过关
概率:
典型例题
例1.1) 一个盒子装有5个白球3个黑球,这些球除颜色外,完全相同,从中任意取出两个球,求取出的两个球都是白球的概率;
(2) 箱中有某种产品a个正品,b个次品,现有放回地从箱中随机地连续抽取3次,每次1次,求取出的全是正品的概率是( )
A. B. C. D.
(3) 某班有50名学生,其中15人选修A课程,另外35人选修B课程,从班级中任选两名学生,他们是选修不同课程的学生的概率是多少?
解:(1)从袋内8个球中任取两个球共有种不同结果,从5个白球中取出2个白球有种不同结果,则取出的两球都是白球的概率为
(2) (3)
变式训练1. 盒中有1个黑球9个白球,它们除颜色不同外,其它没什么差别,现由10人依次摸出1个球,高第1人摸出的是黑球的概率为P1,第10人摸出是黑球的概率为P10,则 ( )
A. B.
C.P10=0 D.P10=P1
解:D
例2. 甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球,两甲、乙两袋中各任取2个球.
(1) 若n=3,求取到的4个球全是红球的概率;
(2) 若取到4个球中至少有2个红球的概率为,求n.
解:(1)记“取到的4个球全是红球”为事件.
(2)记“取到的4个球至多有1个红球”为事件B,“取到的4个球只有1个红球”为事件B1,“取到的4个球全是白球”为事件B2,由题意,得
所以
,化简,得7n2-11n-6=0,解得n=2,或(舍去),故n=2.
变式训???2:在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同.从中摸出3个球,至少摸到2个黑球的概率等于 ( )
A. B.
C. D.
解:A
例3. 袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球取出的可能性都相等,用表示取出的3个小球上的最大数字,求:
(1) 取出3个小球上的数字互不相同的概率;
(2) 计分介于20分到40分之间的概率.
解:(1)“一次取出的3个小球上的数字互不相同”的事件记为A,
则
(2)“一次取球所得计分介于20分到40分之间”的事件记为C,则P(C)=P(“=3”或“=4”)=P(“=3”)+P(“=4”)=
变式训练3:从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,计算:
① 这个三位数字是5的倍数的概率;
②这个三位数是奇数的概率;
③这个三位数大于400的概率.
解:⑴ ⑵ ⑶
例4. 在一次口试中,要从20道题中随机抽出6道题进行回答,答对了其中的5道就获得优秀,答对其中的4道就可获得及格.某考生会回答20道题中的8道题,试求:
(1)他获得优秀的概率是多少?
(2)他获得及格与及格以上的概率有多大?
解:从20道题中随机抽出6道题的结果数,即是从20个元素中任取6个元素的组合数.由于是随机抽取,故这些结果出现的可能性都相等.
(1)记“他答对5道题”为事件,由分析过程已知在这种结果中,他答对5题的结果有种,故事件的概率为
(2)记“他至少答对4道题”为事件,由分析知他答对4道题的可能结果为种,故事件的概率为:
答:他获得优秀的概率为,获得及格以上的概率为
变式训练4:有5个指定的席位,坐在这5个席位上的人都不知道指定的号码,当这5个人随机地在这5个席位上就坐时.
(1) 求5个人中恰有3人坐在指定的席位上的概率;
(2) 若在这5个人侍在指定位置上的概率不小于,则至多有几个人坐在自己指定的席位上?
解:(1)
(2)由于3人坐在指定位置的概率,故可考虑2人坐在指定位置上的概率,设5人中有2人坐在指定位置上为事件B,则,又由于坐在指定位置上的人越多其概率越少,而要求概率不小于,则要求坐在指定位置上的人越少越好,故符合题中条件时,至多2人坐在指定席位上.
小结归纳
1.实际生活中所遇到的事件包括必然事件、不可能事件及随机事件.随机事件在现实世界中是广泛存在的.在一次试验中,事件是否发生虽然带有偶然性,当在大量重复试验下,它的
显示全部