函数的极大值与极小值课件新人教A版选修.PPT
文本预览下载声明
3.3.2 函数的极大值与和极小值;1.极小值点与极小值
如图,函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a的左侧_________,右侧________,则把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.;2.极大值点与极大值
如图,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b的左侧________,右侧________,则把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值._________、_________统称为极值点,_______和_______统称为极值.;3、若二次函数;1.函数的极大值一定大于极小值吗?在区间内可导函数的极大值和极小值是惟一的吗?
提示:不一定;不一定惟一.;2.导数为0的点都是极值点吗?
提示:不一定.y=f(x)在x=x0及附近有定义,且f′(x0)=0,y=f(x)是否在x=x0处取得极值,还要看f′(x)在x0两???的符号是否异号.例如f(x)=x3,由f′(x)=3x2知f′(0)=0,但x=0不是f(x)=x3的极值点.;求已知函数的极值;;【解】 (1)f′(x)=3x2-6x-9.
解方程3x2-6x-9=0,得x1=-1,x2=3.
当x变化时,f′(x)与f(x)的变化情况如下表:;已知函数极值情况,逆向应用确定函数的解析式,进而研究函数性质时,注意两点:
(1)常根据极值点处导数为0和极值两个条件列方程组,利用待定系数法求解.
(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.;;极值问题的综合应用主要涉及到极值的正用和逆用,以及与单调性问题的综合,题目着重考查已知与未知的转化,以及函数与方程的思想、分类讨论的思想在解题中的应用,在解题过程中,熟练掌握单调区间问题以及极值问题的基本解题策略是解决综合问题的关键.;;1、 求函数f(x)=x3-12x的极值.
解:函数f(x)的定义域为R.
f′(x)=3x2-12=3(x+2)(x-2).
令f′(x)=0,得x=-2或x=2.
当x变化时,f′(x)、f(x)的变化状态如下表:;x;2、函数
的极值点个数为( )
A、0 B、1 C、 2 D、3;1.极值的概念理解
在定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值.请注意以下几点:
(1)极值是一个局部概念.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个定义域内最大或最小.;(2)函数的极值不一定是惟一的,即一个函数在某个区间上或定义域内的极大值或极小值可以不止一个.
(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值,如下图所示,x1是极大值点,x4是极小值点,而f(x4)>f(x1).;2.极值点与导数为零的点
(1)可导函数的极值点是导数为零的点,但是导数为零的点不一定是极值点,即“点x0是可导函数f(x)的极值点”是“f′(x0)=0”的充分但不必要条件;
(2)可导函数f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧和右侧f′(x)的符号不同.
如果在x0的两侧f′(x)的符号相同,则x0不是极值点.;布置作业
显示全部