几何概型教学的设计.doc
文本预览下载声明
设计人:宋 鹏 飞
2012年2月27日
3. 3.1《几何概型》教学设计
教学背景分析
本节内容是北师大版高中数学必修3概率一章的最后一节,是对古典概型内容的进一步拓展与延伸。此节内容是为更广泛地满足随机模拟的需要而在新课本中增加的,这是与以往教材安排上的最大的不同之处。这充分体现了数学与实际生活的紧密关系,来源生活,而又高于生活。
教材地位与作用 本节课是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸,使概率的公理化定义更加完备。尽管本节内容在课程标准中的要求仅为了解和会简单的应用,但蕴含的数形结合和数学建模的思想凸显了其重要性。
教学目标
1、知识目标:使学生了解模拟方法估计概率的实际应用,初步体会几何概型的意义;并能够运用模拟方法估计概率。
2、能力目标:培养学生实践能力、协调能力、创新意识和处理数据能力以及应用数学意识。
3、情感目标:鼓励学生动手试验,探索、发现规律并解决实际问题,激发学生学习的兴趣。
教学重点
借助模拟方法来估计某些事件发生的概率、几何概型的概念及应用
体会随机模拟中的统计思想:用样本估计总体。
教学难点:
设计和操作一些模拟试验,对从试验中得出的数据进行统计、分析;
应用随机数解决各种实际问题。
教学方法
本节课是概率范畴,故课程内容的性质而决定了在教学中要以实际生活的例子为主,设计出便于学生动手和思考的问题并适时引导学生对实际问题的进行探究,运用多媒体课件加强数形结合思想的渗透,同时设计一定的有梯度的例题、练习题加以巩固,让学生在动手和思考中体会知识的形成过程。
学法指导
自主高效的预习,能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;培养同学们的动手能力和实际应用能力意识
教学过程设计:(由四个环节组成)
(1) 课前预习
(2)课堂探究
(3)课堂检测
(4)课后作业
课前预习案
体验与思考
情境一、
甲、乙二人玩转盘游戏,如以下两图,规定当指针指向阴影区域时,甲获胜,否则乙获胜. 问:
1、各图所有可能的试验结果与甲获胜包含的试验结果是多少?;
2、能否用古典概型公式求甲获胜的概率,为什么?
情境二、
长为3米的绳子,从中间随机剪开,则得到的每段绳长都不小于1米的概率是多少?
以上两个问题的共同特点是什么?如何求以上两个随机事件发生的概率?
感悟新知
1阅读课文回答:什么是几何概型?其概率公式是什么?
2举例说明:举一个几何概型的实例
3比较并探究:古典概型与几何概型的区别与联系是什么?
我的疑惑
1
2
3
课堂探究案
一.新知探究
实际问题提出
如图,有一个由红绿蓝三色构成的彩色圆盘,向圆盘内随机抛掷米粒(落在圆盘外的算).
提问1:米粒落在三种颜色区域内的可能性一样大的吗?
提问2:米粒落在哪种颜色的可能性最大?可能性大小与什么有关?
提问3:你猜想米粒落在红色区域内的概率是多少?蓝色?绿色?(你如何去做,
能否用以前知识解决),完成以下试验,说明你的猜测,并写出结论
提问4:这个试验问题是不是古典概型的问题?这个问题有何特点
与古典概型有何异同, 说说你的想法,与大家分享
探 究 过 程
学生根据问题,自由讨论:
在预习的基础上,引导学生针对问题3,问题4 学生可能会回答:
,
这个试验不是古典概型,不合古典概型的特点,引导学生分析是此试验的特点
学生动手对自己的猜测进行试验验证
实验用具
塑料桶、彩色圆盘纸一张、米粒50粒、数据统计表一份
实验步骤
(1)两人一小组同学分别站在塑料桶的周围随机将50粒实验米粒抛入其
中,最好是将米粒抛掷在桶壁上形成反弹;
(2)如实统计出落在红色区域内的米粒数量并做好记录(表1),然后取出
全部实验米粒,至此为完成一组实验,每小组进行三组实验;
(3)对实验原始数据进行进一步统计及相关计算 (表2);
(4)分析实验数据,归纳总结实验结果.
表1
第一组试验 第二组试验 第三组试验 落在红色区域的米粒数 试验总次数 50 50 50 表2
显示全部