文档详情

第五章矩阵的特征值与特征向量的计算解析.doc

发布:2016-04-25约5.46万字共30页下载文档
文本预览下载声明
5.2 幂法及其MATLAB程序 5.2.2 幂法的MATLAB程序 用幂法计算矩阵的主特征值和对应的特征向量的MATLAB主程序 function [k,lambda,Vk,Wc]=mifa(A,V0,jd,max1) lambda=0;k=1;Wc =1; ,jd=jd*0.1;state=1; V=V0; while((k=max1)(state==1)) Vk=A*V; [m j]=max(abs(Vk)); mk=m; tzw=abs(lambda-mk); Vk=(1/mk)*Vk; Txw=norm(V-Vk); Wc=max(Txw,tzw); V=Vk;lambda=mk;state=0; if(Wcjd) state=1; end k=k+1;Wc=Wc; end if(Wc=jd) disp(请注意:迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:) else disp(请注意:迭代次数k已经达到最大迭代次数max1,主特征值的迭代值lambda,主特征向量的迭代向量Vk,相邻两次迭代的误差Wc如下:) end Vk=V;k=k-1;Wc; 例5.2.2 用幂法计算下列矩阵的主特征值和对应的特征向量的近似向量,精度.并把(1)和(2)输出的结果与例5.1.1中的结果进行比较. (1); (2);(3);(4). 解 (1)输入MATLAB程序 A=[1 -1;2 4]; V0=[1,1]; [k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100), [V,D] = eig (A), Dzd=max(diag(D)), wuD= abs(Dzd- lambda), wuV=V(:,2)./Vk, 运行后屏幕显示结果 请注意:迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下: k = lambda = Wc = 33 3.00000173836804 8.691862856124999e-007 Vk = V = wuV = -0.49999942054432 -0.70710678118655 0.44721359549996 -0.89442822756294 1.00000000000000 0.70710678118655 -0.89442719099992 -0.89442719099992 Dzd = wuD = 3 1.738368038406435e-006 由输出结果可看出,迭代33次,相邻两次迭代的误差Wc 8.69 19e-007,矩阵的主特征值的近似值lambda3.000 00和对应的特征向量的近似向量Vk (-0.500 00,1.000 00, lambda与例5.1.1中的最大特征值近似相等,绝对误差约为1.738 37e-006,Vk与特征向量 的第1个分量的绝对误差约等于0,第2个分量的绝对值相同.由wuV可以看出,的特征向量V(:,2) 与Vk的对应分量的比值近似相等.因此,用程序mifa.m计算的结果达到预先给定的精度. (2) 输入MATLAB程序 B=[1 2 3;2 1 3;3 3 6]; V0=[1,1,1]; [k,lambda,Vk,Wc]=mifa(B,V0,0.00001,100), [V,D] = eig (B), Dzd=max(diag(D)), wuD= abs(Dzd- lambda), wuV=V(:,3)./Vk, 运行后屏幕显示结果 请注意:迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下: k = lambda = Wc = Dzd = wuD = 3 9 0 9 0 Vk = wuV = 0.50000000000000 0.81649658092773 0.50000000000000 0.81649658092773 1.00000000000000
显示全部
相似文档