国立屏东师范学院九十四学年度学士班转学招生考试.doc
文本预览下载声明
PAGE
PAGE 3
國立屏東師範學院九十四學年度學士班轉學招生考試
線性代數試題
請注意:
本試題答案請「橫式」書寫,並依規定上下翻頁,否則不予計分。
不必抄題,但請依序將題號標出,並寫在答案紙上。
是非題(30%)
判斷下列各敘述之真假,每答對一題得3分。
※作答時務請在答案卷上先畫出 1.( ) 2. ( )……10. ( ),然後再逐題作答,認為敘述為真者,在( )中畫 ○,否則畫 ×。
If A and B are matrices, then
If AB is the zero matrix, then A or B is the zero matrix.
If is a linear transformation, then L(u)= L(v) implies that u= v.
The Solution space of the homogeneous system AX= 0 is spanned by the columns of A.
If A is an matrix such that the homogeneous system AX= 0 has only the trivial solution, then rank A<8.
If A and B are similar, then det (A)= det (B).
Every orthonormal set of five vectors in is a basis for .
If is the linear transformation defined by , then is in ker L.
If is a linear transformation such that dim (ker L)= 3, then dim (range L)= 2.
If an matrix A is diagonalizable, then is diagonalizable.
計算題
1. 找出下列矩陣的反矩陣 (10%)
2. 假設, , 為線性獨立的向量,令,其中,,。請問T是否是一線性獨立的集合。(20%)
3. 請找出下列矩陣固有空間的基底及其相對應的固有值。(10%)
4. 請找出下列矩陣的秩(rank)(10%)
Find a basis for the solution space of the homogeneous system.(10%)
證明題(10%)
Let V be an n-dimensional vector space and S= a basis for V. Define as follows: If V= is a vector in , let L(v)= .
Show that
(1)L is a linear transformation. (5%)
(2)L is one-to one. (5%)
显示全部