命题的概念及符号化.pdf
文本预览下载声明
计算机科学 MOOC 课程群
计算机科学 MOOC 课程群
离散数学基础
离散数学基础
命题逻辑研究以命题为基本单位构成的前提和结论之间的可推导关系。我们将讨论
命题逻辑的基本概念,以及基于命题的真值解释实行演绎的等值演算和自然推理演
算。这一节从命题的概念和符号化开始。
命题的概念
− 一个命题是一个非真即假的陈述句。
» 命题具有真假值,而且非真即假
» 陈述句限定源于命题的判断属性
» 或然性的排除
» 命题的真假判定问题:真假的常识性影响;真假的时间性影响;判定方法
的存在性。
• 定义:简单命题(原子命题)
− 简单命题只对一个事物的一个性质进行判断。
» 例:雪是白的。
» 例:我下午在图书馆。
» 例:张三和李四是表兄弟。
» 例:他的粗鲁的态度使我受到了深深的伤害。
− 简单命题的语义真值由客观事实决定。
• 定义:复合命题
− 从语法结构上可分解成若干简单命题的命题是复合命题
» 例:我下午在图书馆,或者去打球。
» 例:如果明天不下雨,我们就去白云山。
» 例:我们明天去白云山,除非天下雨。
• 定义:复合命题
− 从语义上可分解成若干简单命题的命题是复合命题
» 例:张三和李四都是中大学生。
− 复合命题由若干简单命题通过命题联结词构造而成,其语义真值也由之确定。
• 命题的符号化表示
− 定义:命题常量
» 一个命题常量是一个表达了具体的命题内容的命题,可使用一个形式符号
p 来表示。
» 例:p :张三是中大学生。
» 此时符号 p 具有了明确的语言含义,称之为一个命题常量。命题常量是一
个命题。
• 命题的符号化表示
− 定义:命题变量/命题形式
» 在符号体系中,当我们只关心对象的位置关系(而不关心对象的语言解释)
时,可使用符号来表示对象。
• 命题的符号化表示
− 定义:命题变量/命题形式
» 使用一个形式符号 P 表示“在描述位置上有一个命题” ,而并不指出该命题
的内容或真假。 这样的符号 P 称为一个命题变量 (命题变元、命题变项),
或一个命题形式。
» 显然一个命题变量没有真假值,它不是命题。
• 命题的符号化表示
− 定义:命题变量/命题形式
» 当命题变量表示的命题内容得到确定时,称该变量获得指派(被赋值)。
此时该变量取得了真假值,成为一个命题。
» 为陈述方便起见,我们后面所说的“命题 P ” ,一般指的就是命题形式,除
非有特别的语义声明。
• 命题的符号化表示
− 定义:真值
» 命题或命题变量的取值情况称为该命题或命题变量的真值。
» 通常用 0 或 F 表示“为假” ,用 1 或 T 表示“为真” 。
• 复合命题的符号化表示
− 现在,我们可以用一个形式符号 P 表示一个原子命题,而并不指出该命题的
内容或真假。
− 为将命题的符号化表示用于复合命题,需要引进所谓的命题联结词以描述原子
命题及其构造关系。
命题联结词也称为命题运算符,具有严格的逻辑含义,以求保证符号系统的语义与
其原有自然系统语义的一致性。我们讨论的联结词包括 :否定词 ¬ ,合取词 ∧ ,
析取词 ∨,条件词 → (蕴含词)和双条件词 ↔ (等价词)
• 否定词 ¬
− 定义:设 P 为一个命题,则 ¬P 也为一个命题,称为 P 的否定。其逻辑意义
为:
P ¬P
F T
T F
• 否定词 ¬
− 对否定词 ¬ 的自然语言解释:
» 例1 :
显示全部