第二章点线面的位置关系综合检测题(人教A版必修2).doc
文本预览下载声明
第二章综合素能检测
时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)
1.(2013~2014·福建师大附中模块)设α,β表示两个平面,l表示直线,A,B,C表示三个不同的点,给出下列命题:
①若A∈l,A∈α,B∈l,B∈α,则l?α;
②α,β不重合,若A∈α,A∈β,B∈α,B∈β,则α∩β=AB;
③若l?α,A∈l,则A?α;
④若A,B,C∈α,A,B,C∈β,且A,B,C不共线,则α与β重合.
则上述命题中,正确的个数是( )
A.1 B.2
C.3 D.4
[答案] C
[解析] 根据公理1可知①正确;根据公理3可知②正确,根据公理2可知④正确;当点A为直线l与平面α的交点时,可知③错误.
2.菱形ABCD在平面α内,PC⊥α,则PA与对角线BD的位置关系是( )
A.平行 B.相交但不垂直
C.相交垂直 D.异面垂直
[答案] D
[解析] ∵PC⊥平面α,∴PC⊥BD,又在菱形ABCD中,AC⊥BD,∴BD⊥平面PAC.又PA?平面PAC,∴BD⊥PA.显然PA与BD异面,故PA与BD异面垂直.
3.设P是△ABC所在平面α外一点,H是P在α内的射影,且PA,PB,PC与α所成的角相等,则H是△ABC的( )
A.内心 B.外心
C.垂心 D.重心
[答案] B
[解析] 由题意知Rt△PHA≌Rt△PHB≌Rt△PHC,得HA=HB=HC,所以H是△ABC的外接圆圆心.
4.已知二面角α-l-β的大小为60°,m,n为异面直线,且m⊥α,n⊥β,则m,n所成的角为( )
A.30° B.60°
C.90° D.120°
[答案] B
[解析] 易知m,n所成的角与二面角的大小相等,故选B.
5.(2013~2014·珠海模拟)已知a,b,l表示三条不同的直线,α,β,γ表示三个不同的平面,有下列命题:
①若α∩β=a,β∩γ=b,且a∥b,则α∥γ;
②若a,b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β,则α∥β;
③若α⊥β,α∩β=a,b?β,a⊥b,则b⊥α;
④若a∩α,b∩α,l⊥a,l⊥b,则l⊥α.
其中正确的有( )
A.0个 B.1个
C.2个 D.3个
[答案] C
[解析] 可借助正方体模型解决.如图,在正方体A1B1C1D1-ABCD中,可令平面A1B1CD为α,平面DCC1D1为β,平面A1B1C1D1为γ.又平面A1B1CD∩DCC1D1=CD,平面A1B1C1D1∩平面DCC1D1=C1D1,则CD与C1D1所在的直线分别表示a,b,因为CD∥C1D1,但平面A1B1CD与平面A1B1C1D1不平行,即α与γ不平行,故①错误.因为a,b相交,可设其确定的平面为γ,根据a∥α,b∥α,可得γ∥α.同理可得γ∥β,因此α∥β,②正确.由两平面垂直,在一个平面内垂直于交线的直线和另一个平面垂直,易知③正确.a∥b时,由题知l垂直于平面α内两条不相交直线,得不出l⊥α,
6.(2013·新课标全国Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l?α,l?β,则( )
A.α∥β且l∥α B.α⊥β且l⊥β
C.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l
[答案] D
[解析] 由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l,故选D.
7.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F
①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.
其中一定正确的有( )
A.①② B.②③
C.②④ D.①④
[答案] D
[解析] 如右图所示.由于AA1⊥平面A1B1C1D1,EF?平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF?平面A1B1C1D1,所以EF∥
8.如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,
A.EH∥FG B.四边形EFGH是矩形
C.Ω是棱柱 D.Ω是棱台
[答案] D
[解析] 因为EH∥A1D1,A1D1∥B1C
显示全部