安徽省宣城市2023年九年级《数学》上学期期末试题与参考答案.docx
PAGE27/NUMPAGES27
安徽省宣城市2023年九年级《数学》上学期期末试题与参考答案
一、选择题
本大题共10小题,每小题4分,满分40分。
1.下列函数中,是二次函数的是()
A B.
C. D.
【答案】C
【分析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a,b,c为常数,)的形式,那么这个函数就是二次函数,否则就不是.
【详解】A.,关系式不是整式,故不是二次函数;
B.,关系式不是整式,故不是二次函数;
C.,自变量的次数是2,且二次项的系数不为零,故是二次函数;
D.,自变量的次数不是2,是一次函数,不是二次函数;
故选C.
【点睛】本题考查了二次函数的定义,一般地,形如(a,b,c为常数,)的函数叫做二次函数.
2.如果点C是线段的黄金分割点(),那么下列结论正确的为()
A B. C. D.
【答案】D
【分析】根据黄金分割的概念进行判断即可.
【详解】解:因为点是线段的黄金分割点,,
所以是和的比例中项,即,
所以,
所以选项A、B、C结论错误,不符合题意,选项D结论正确,符合题意,
故选:D.
【点睛】本题考查的是黄金分割,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.
3.在中,,下列各式中,正确的是()
A. B. C. D.
【答案】A
【分析】先用勾股定理求出,再利用三角函数的定义逐一判断即可.
【详解】解:,
,
,
,故选择:A
【点睛】本题考查了锐角三角函数的定义:正确理解正弦、余弦、正切函数的定义是解决问题的关键.
4.如图,点在的边上,要判断,添加下列一个条件,不正确的是()
A. B.
C. D.
【答案】D
【分析】分别利用相似三角形的判定方法判断得出即可.
【详解】解:A、当∠ABP=∠C时,又因为∠A=∠A,
所以△ABP∽△ACB,故此选项错误;
B、当∠APB=∠ABC时,又因为∠A=∠A,
所以△ABP∽△ACB,故此选项错误;
C、当AB2=AP?AC时,则=,
又因为∠A=∠A,
所以△ABP∽△ACB,故此选项错误;
D、当AB?BC=AC?BP时,
则=,无法得到△ABP∽△ACB,故此选项正确.故选:D.
【点睛】本题考查相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.
5.小明沿斜坡AB上行40m,其上升的垂直高度CB为20米,则斜坡AB的坡度为()
A.30° B. C. D.
【答案】C
【分析】求斜坡的坡度,关键是斜坡的铅垂直高度和水平长度,根据已知条件,由勾股定理可求出AC的长即可得出结果.
【详解】解:
又
所以斜坡AB的坡度
故选:C.
6.已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y=的图象在同一坐标系中大致为()
B.
C.D.
【答案】D
【分析】先通过二次函数的图像确定a、b、c的正负,再利用x=1代入解析式,得到a+b+c的正负即可判定两个函数的图像所在的象限,即可得出正确选项.
【详解】解:由图像可知:图像开口向下,对称轴位于y轴左侧,与y轴正半轴交于一点,
可得:
又由于当x=1时,
因此一次函数的图像经过一、二、四三个象限,反比例函数的图像位于二、四象限;
故选:D.
【点睛】本题考查了二次函数的图像与性质、一次函数的图像与性质以及反比例函数的图像与性质,解决本题的关键是能读懂题干中的二次函数图像,能根据图像确定解析式中各系数的正负,再通过各项系数的正负判定另外两个函数的图像所在的象限,本题蕴含了数形结合的思想方法等.
7.如图,矩形的边与y轴平行,顶点B的坐标为,D的坐标为,反比例函数的图像与矩形ABCD有公共点,则k的取值范围为()
B.
C. D.
【答案】B
【分析】根据矩形写出A,两点坐标,然后利用双曲线经过点A,时对应的k值,从而得到k的取值范围.
【详解】解:由题可知A,两点坐标为:,
当双曲线经过点A时,k的值最小,此时,
当双曲线经过点时,k的值最大,此时,
所以k的取值范围为,故选B.
8.如图,在边长为1的小正方形网格中,点A,B,C,D都在这些小正方形的顶点上,,相交于点O,则()
A. B.2 C. D.
【答案】C
【分析】通过添加辅助线构造出后,将问题转化为求的值,再利用勾股定理、锐角三角函数求解即可.
【详解】解:连接、,如图:
因为由图可知:
所以,,
所以
因为小正方形的边长为
所以在中,,
所以
所以.
故选:C
【点睛】本题考查了正方形的性质、直角三角形的判定、勾股定理以及锐角三角函