七年级上《第四章几何图形初步》期末复习知识点+易错题(数学试卷新课标人教版七年级上复习试题).doc
文本预览下载声明
2019年 七年级数学上册 期末复习 几何图形初步
知识点+易错题
几何图形初步 知识点
一、本章的知识结构图
一、立体图形与平面图形
立体图形:棱柱、棱锥、圆柱、圆锥、球等。
1、几何图形
平面图形:三角形、四边形、圆等。
主(正)视图---------从正面看
2、几何体的三视图 侧(左、右)视图-----从左(右)边看
俯视图---------------从上面看
(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
3、立体图形的平面展开图
(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。
4、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
二、直线、射线、线段
(一)直线、射线、线段的区别与联系:
基本概念
(二)直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;
1、线段的性质:两点的所有连线中,线段最短。简单地:两点之间,线段最短。
2.画线段的方法:(1)度量法;(2)用尺规作图法
3、线段的大小比较方法:(1)度量法;(2)叠合法
4、点与直线的位置关系:(1)点在直线上;(2)点在直线外。
5、过三个已知点不一定能画出直线。
当三个已知点在一条直线上时,可以画出一条直线;
当三个已知点不在一条直线上时,不能画出直线。
(三)两点距离的定义:连接两点间的线段的长度,叫做这两点的距离。
(四)线段中点:把一条线段分成两条相等的线段的点叫线段中点;
(五)延长线和反向延长线:延长线段AB是指按从端点A到B的方向延长;延长线段BA是指按从端点B到A的反方向延长,这时也可以说反向延长线段AB。直线、射线没有延长线,射线可以有反向延长线。
(六)关于线段的计算:两条线段长度相等,这两条线段称为相等的线段,记作AB=CD,平面几何中线段的计算结果仍为一条线段。即使不知线段具体的长度也可以作计算。
二、角
(一)角的意义:
1、角:由公共端点的两条射线所组成的图形叫做角。
2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类
∠β
锐角
直角
钝角
平角
周角
范围
0<∠β<90°
∠β=90°
90°<∠β<180°
∠β=180°
∠β=360°
有公共端点的两条射线组成的图形叫做角,公共端点是角的顶点,这两条射线是角的两条边,角也可以看做由一条射线绕着它的端点旋转而形成的图。
注意:表示角时,一定要对照几何图形,注意不能漏掉角的符号,切记用三个大写字母表示一个角时,顶点字母一定要写在中间;同一顶点处有多个角时,切不可用顶点字母来表示。
(二)角的度量:1°=60′;1′=60″;1直角=90°;1平角=180 °;1周角=360°
(三)角的大小的比较:
(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;
(2)度量法。
(四)画角:利用三角尺画出15的整数倍的角,利用量角器画出任何给定度数的角
(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。
(2)借助量角器能画出给定度数的角。
(3)用尺规作图法。
(五)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
(六)有关角的运算:
(七)时针和分针所成的角度:
钟表一周为360°,每一个大格为30°,每一个小格为6°.(每小时,时针转过30°,即一个大格,分针转过360°,即一周;每分钟,分针转过6°即一个小格)
(八)方位角:表示方向的角,经常用于航空、航海、测绘中。
注意:用角度表示方向,一般以正北、正南为基准,向东或向西旋转的角度表示方向,如“北偏东40°”,不要写成“东偏北50°”
(九)互余与互补:
(1)若∠1+∠2=90°,则∠1与∠2互为余角。其中∠1是∠2的余角,∠2是∠1的余角。
(2)若∠1+∠2=180°,则∠1与∠2互为补角。其中∠1是∠2的补角,∠2是∠1的补角。
如果两个角的和等于直角,就说这两个角互为余角,即其中一个是另一个的余角;
如果两个角的和等于平角,就说这两个角互为补角,即其中一个是另一个的补角;
等角的余角相等,等角的补角相等。
(十)方向角
(1)正方向
(2)北(南)偏东(西)方向
(3)东(西)北(南)方向
图形认识 错题精选
一、选择题
LISTNUM OutlineDefault \l 3
显示全部