2017届高考数学二轮复习专题一函数及导数不等式第5讲导数及不等式证明恒成立及能成立问题课件.ppt
文本预览下载声明
探究提高 存在性问题和恒成立问题的区别与联系 存在性问题和恒成立问题容易混淆,它们既有区别又有联系:若g(x)≤m恒成立,则g(x)max≤m;若g(x)≥m恒成立,则g(x)min≥m;若g(x)≤m有解,则g(x)min≤m;若g(x)≥m有解,则g(x)max≥m. 【训练2】 (2016·宁波期末)已知函数f(x)=x3+3|x-a|(a∈R). (1)若f(x)在[-1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)-m(a); (2)设b∈R.若[f(x)+b]2≤4对x∈[-1,1]恒成立,求3a+b的取值范围. 1.不等式恒成立、能成立问题常用解法有: (1)分离参数后转化为最值,不等式恒成立问题在变量与参数易于分离的情况下,采用分离参数转化为函数的最值问题,形如a>f(x)max或a<f(x)min. (2)直接转化为函数的最值问题,在参数难于分离的情况下,直接转化为含参函数的最值问题,伴有对参数的分类讨论. (3)数形结合. 2.利用导数证明不等式的基本步骤 (1)作差或变形. (2)构造新的函数h(x). (3)利用导数研究h(x)的单调性或最值. (4)根据单调性及最值,得到所证不等式. 3.导数在综合应用中转化与化归思想的常见类型 (1)把不等式恒成立问题转化为求函数的最值问题; (2)把证明不等式问题转化为函数的单调性问题; (3)把方程解的问题转化为函数的零点问题. 真题感悟·考点整合 热点聚焦·题型突破 归纳总结·思维升华 第5讲 导数与不等式的证明、恒成立及能 成立问题 高考定位 在高考压轴题中,函数与不等式的交汇是考查热点,常以含指数、对数函数为载体考查不等式的证明、比较大小、范围等问题,以及不等式的恒成立与能成立问题. 真 题 感 悟 考 点 整 合 1.利用导数解决不等式恒成立问题的“两种”常用方法 (1)分离参数后转化为函数最值问题:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a恒成立,只需f(x)min≥a即可;f(x)≤a恒成立,只需f(x)max≤a即可. (2)转化为含参函数的最值问题:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),伴有对参数的分类讨论,然后构建不等式求解. 2.常见构造辅助函数的四种方法 (1)直接构造法:证明不等式f(x)>g(x)(f(x)<g(x))的问题转化为证明f(x)-g(x)>0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x). (2)构造“形似”函数:稍作变形后构造.对原不等式同解变形,如移项、通分、取对数,把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数. (3)适当放缩后再构造:若所构造函数最值不易求解,可将所证明不等式进行放缩,再重新构造函数. (4)构造双函数:若直接构造函数求导,难以判断符号,导数的零点也不易求得,因此单调性和极值点都不易获得,从而构造f(x)和g(x),利用其最值求解. 3.不等式的恒成立与能成立问题 (1)f(x)>g(x)对一切x∈[a,b]恒成立?[a,b]是f(x)>g(x)的解集的子集?[f(x)-g(x)]min>0(x∈[a,b]). (2)f(x)>g(x)对x∈[a,b]能成立?[a,b]与f(x)>g(x)的解集的交集不是空集?[f(x)-g(x)]max>0(x∈[a,b]). (3)对?x1,x2∈[a,b]使得f(x1)≤g(x2)?f(x)max≤g(x)min. (4)对?x1∈[a,b],?x2∈[a,b] 使得f(x1)≥g(x2)?f(x)min≥g(x)min. 热点一 导数与不等式 [微题型1] 利用导数证明不等式 [微题型2] 不等式恒成立求参数范围问题 【例1-2】 (1)已知函数f(x)=ax-1-ln x,a∈R. 探究提高 (1)利用最值法解决恒成立问题的基本思路是:先找到准确范围,再说明“此范围之外”不适合题意(着眼于“恒”字,寻找反例即可). (2)对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法. 【训练1】 (2016·浙江五校联考)已知a0,b∈R,函数f(x)=4ax3-2bx-a+b. (1)证明:当0≤x≤1时, ①函数f(x)的最大值为|2a-b|+a; ②f(x)+|2a-b|+a≥0; (2)若-1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围. 热点二 不等式恒成立与能成立问题
显示全部