文档详情

三角函数的诱导公式(2).ppt

发布:2019-03-08约1.06千字共15页下载文档
文本预览下载声明
研修班 * * 三角函数的诱导公式(2) 学校:江苏省洪泽中学 教师:傅 启 峰 公式一: 公式二: sin(α+k·360°) = sinα cos(α+k·360°) = cosα tan(α+k·360°) = tanα 复习提问: 公式三: 公式四: α+2kπ( k∈Z),-α,π±α的三角函数于α的 同名三角函数值,前面加上一个把α看成一角时, 原函数所在象限的符号 (4)sin(12000)·cos(12900)+cos(-10200)·sin(-10500)+tan9450 (4)1/2 (3)0 巩固练习: 化归:负化正,大化小. 1.求下列三角函数的值 (1)sin(-12000) (2)cos(47/6)π (3)cos(π/5)+cos(2π/5)+cos(3π/5)+cos(4π/5) 18 下面我们来研究α与π/2-α的三角函数值之间的关系 设α是锐角,它的终边与单位圆的交点为 P(x,y),则π/2-α的终边与单位圆的交点为 P1(y,x),由三角函数的定义知: Sin(π/2-α)=x Cos(π/2-α)=y π/2±α的三角函数值等于α的余函数(正弦函数与余弦函数互为余函数)值,前面加上把α看成是锐角时原函数所在象限的符号. 利用单位圆和三角函数的定义也可以得到公式(六) 例题选讲 π/2±α,3π/2±α的三角函数值等于α的余函数(正弦函数与余弦函数互为余函数)值,前面加上把α看成是锐角时原函数所在象限的符号. -tanα 1、诱导公式:(公式一到六) 口诀:奇变偶不变,符号看象限 意义: 课堂小结: 2、求任意角的三角函数值的步骤: 任意角的三角函数 相应正角的三角函数 角的三角函数 锐角的三角函数 三角函数值 查表 思想: 化归 方法:负变正,大变小. 1 已知sin(?/4+?)=1/2,则sin(3?/4-?)的 值是 。 1/2 0 例3:已知cos (750+?)=1/3, 求cos(1050-?)+cos(2850-?) 2 cos(?-8?/3)+cos(?+13?/3)= . 巩固练习: 0
显示全部
相似文档