高中数学双曲线经典例题.doc
文本预览下载声明
高中数学双曲线经典例题
一、双曲线定义及标准方程
1.已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是( )
A.x=0 B.
C. D.
2、求适合下列条件的双曲线的标准方程:
(1)焦点在 x轴上,虚轴长为12,离心率为 ;
(2)顶点间的距离为6,渐近线方程为.
3、与双曲线有相同的焦点,且过点的双曲线的标准方程是
4、求焦点在坐标轴上,且经过点A(,﹣2)和B(﹣2,)两点的双曲线的标准方程.
5、已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为 .
二、离心率
1、已知点F1、F2分别是双曲线的两个焦点,P为该双曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为 .
2、设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为 .
3、双曲线的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和.则双曲线的离心率e的取值范围是( )
A. B. C. D.
3、焦点三角形
1、设P是双曲线x2﹣=1的右支上的动点,F为双曲线的右焦点,
已知A(3,1),则|PA|+|PF|的最小值为 .
2、.已知F1,F2分别是双曲线3x2﹣5y2=75的左右焦点,P是双曲线上的一点,且∠F1PF2=120°,求△F1PF2的面积.
3、已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求:
(1)双曲线的渐近线方程;
(2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积.
4、直线与双曲线的位置关系
已知过点P(1,1)的直线L与双曲线只有一个公共点,则直线L的斜率k= ____
5、综合题型
如图,已知椭圆(ab0)的离心率为eq \f(\r(2),2),以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(eq \r(2)+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(1)求椭圆和双曲线的标准方程;
(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.
高中数学双曲线经典例题
参考答案与试题解析
一.选择题(共2小题)
1.(2015秋?洛阳校级期末)已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是( )
A.x=0 B.
C. D.
【解答】解:由题意,①若两定圆与动圆相外切或都内切,即两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,
∴|MC1|=|MC2|,即M点在线段C1,C2的垂直平分线上
又C1,C2的坐标分别为(﹣4,0)与(4,0)
∴其垂直平分线为y轴,
∴动圆圆心M的轨迹方程是x=0
②若一内切一外切,不妨令与圆C1:(x+4)2+y2=2内切,与圆C2:(x﹣4)2+y2=2外切,则有M到(4,0)的距离减到(﹣4,0)的距离的差是2,由双曲线的定义知,点M的轨迹是以(﹣4,0)与(4,0)为焦点,以为实半轴长的双曲线,故可得b2=c2﹣a2=14,故此双曲线的方程为
综①②知,动圆M的轨迹方程为
应选D.
2.(2014?齐齐哈尔三模)双曲线的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和.则双曲线的离心率e的取值范围是( )
A. B. C. D.
【解答】解:直线l的方程为+=1,即bx+ay﹣ab=0.
由点到直线的距离公式,且a>1,得到点(1,0)到直线l的距离 ,
同理得到点(﹣1,0)到直线l的距离.,.
由,得..
于是得 5≥2e2,即4e4﹣25e2+25≤0.
解不等式,得 ≤e2≤5.
由于e>1>0,
所以e的取值范围是 .
故选D.
二.填空题(共5小题)
3.(2013秋?城区校级期末)已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为 33 .
【解答】解:由双曲线方程知,a=8,b=6,则c==10.
∵P是双曲线上一点,
∴||PF1|﹣|PF2||=2a=16,
又|PF1|=17,
∴|PF2|=1或|PF2|=33.
又|PF2|≥c﹣a=2,
显示全部