高中数学必修一第三章函数的应用知识点总结.doc
文本预览下载声明
PAGE
第
第 PAGE \* MERGEFORMAT 1 页 共 NUMPAGES \* MERGEFORMAT 4 页
第三章 函数的应用
一、方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
eq \o\ac(○,1) (代数法)求方程的实数根;
eq \o\ac(○,2) (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、基本初等函数的零点:
①正比例函数仅有一个零点。
②反比例函数没有零点。
③一次函数仅有一个零点。
④二次函数.
(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
⑤指数函数没有零点。
⑥对数函数仅有一个零点1.
⑦幂函数,当时,仅有一个零点0,当时,没有零点。
5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把转化成,再把复杂的函数拆分成两个我们常见的函数(基本初等函数),这另个函数图像的交点个数就是函数零点的个数。
选择题判断区间上是否含有零点,只需满足。
Eg:试判断方程[0,2]内是否有实数解?并说明理由。
8、函数零点的性质:
从“数”的角度看:即是使的实数;
从“形”的角度看:即是函数的图象与轴交点的横坐标;
若函数的图象在处与轴相切,则零点通常称为不变号零点;
若函数的图象在处与轴相交,则零点通常称为变号零点.
一元二次方程根的分布的基本类型
设一元二次方程()的两实根为,,且.
为常数,则一元二次方程根的分布(即,相对于的位置)或根在区间上的分布主要有以下基本类型:
表一:(两根与0的大小比较)
分布情况
两个负根即两根都小于0
两个正根即两根都大于0
一正根一负根即一个根小于0,一个大于0
大致图象()
得出的结论
大致图象()
得出的结论
综合结论
(不讨论)
表二:(两根与的大小比较)
分布情况
两根都小于即
两根都大于即
一个根小于,一个大于即
大致图象()
得出的结论
大致图象()
得出的结论
综合结论
(不讨论)
表三:(根在区间上的分布)
分布情况
两根都在内
两根有且仅有一根在内(有两种情况,只画了一种)
一根在内,另一根在内,
大致图象()
得出的结论
或
大致图象()
得出的结论
或
综合结论(不讨论)
——————
显示全部