(概论论与数理统计作业.doc
文本预览下载声明
《概率论与数理统计》作业
第1章 概率论的基本概念
§1 .1 随机试验及随机事件
1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是:S={(H,H,H), (H,H,T), (H,T,T), (T,T,T), (T,T,H), (T,H,H), (H,T,H), (T,H,T)} ;
(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= {0,1,2,3};
2.(1) 丢一颗骰子. A:出现奇数点,则A= ;B:数点大于2,则B= .
(2) 一枚硬币连丢2次, A:第一次出现正面,则A= ;
B:两次出现同一面,则= ; C:至少有一次出现正面,则C= .
§1 .2 随机事件的运算
1. 设A、B、C为三事件,用A、B、C的运算关系表示下列各事件:
(1)A、B、C都不发生表示为: .(2)A与B都发生,而C不发生表示为: .
(3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: .
(5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: .
2. 设:则
(1) ,(2) ,(3) ,
(4)= ,(5)= 。
§1 .3 概率的定义和性质
已知,则
(1) , (2)()= , (3)= .
2. 已知 则= .
§1 .4 古典概型
1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,
(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.
2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
2. 已知 则 。
§1 .6 全概率公式
有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人抽“中‘的概率相同。
2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随机地取一个球,求取到红球的概率。
§1 .7 贝叶斯公式
某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。
将两信息分别编码为A和B传递出去,接收站收到时,A被误收作B的概率为0.02,
B被误收作A的概率为0.01,信息A与信息B传递的频繁程度为3 : 2,若接收站收到的信息是A,问原发信息是A的概率是多少?
§1 .8 随机事件的独立性
1. 电路如图,其中A,B,C,D为开关。设各开关闭合与否相互独立,且每一开关闭合的概率均为p,求L与R为通路(用T表示)的概率。
A B
L R
C D
甲,乙,丙三人向同一目标各射击一次,命中率分别为0.4,0.5和0.6,是否命中,相互独立, 求下列概率: (1) 恰好命中一次,(2) 至少命中一次。
第2章 随机变量及其分布
§2.1 随机变量的概念,离散型随机变量
1 一盒中有编号为1,2,3,4,5的五个球,从中随机地取3个,用X表示取出的3个球
中的最大号码., 试写出X的分布律.
2 某射手有5发子弹,每次命中率是0.4,一次接一次地射击,直到命中为止或子弹用尽为止,用X表示射击的次数, 试写出X的分布律。
§2.2 分布和泊松分布
1 某程控交换机在一分钟内接到用户的呼叫次数X是服从λ=4的泊松分布,求
(1)每分钟恰有1次呼叫的概率;(2)每分钟只少有1次呼叫的概率;
(3)每分钟最多有1次呼叫的概率;
2 设随机变量X有分布律: X 2 3 , Y~π(X), 试求:
p 0.4 0.6
(1)P(X=2,Y≤2); (2)P(Y≤2); (3)
显示全部