文档详情

学期《计量经济学试题B》参考答案.doc

发布:2017-03-27约2.06千字共4页下载文档
文本预览下载声明
2012—2013学年第1 学期期末考试 《计量经济学》试题B参考答案 一、简答题 1. 回归模型中为什么要引入随机误差项? 答:在回归模型引入随机误差项的原因可以归纳为以下方面:反映被忽略掉的因素对被解释变量的影响。形式的设定误差。变量的观测误差。对于结构式模型中的随机方程,存在内生变量作解释变量,其与随机误差项通常是同期相关的,因此利用OLS法或GLS法估计,所得参数估计量是有偏且不一致的,这种性质称为联立方程的偏倚性。 样本回归模型: Yi= -4.79 +0.087Xi+ei (1) X系数0.087的经济含义:总收入每增加1法郎,住房支出平均约增加0.087法郎。 (3)(4) (5)、表示以人民币为单位的住房支出和总支出,则由模型(1)可得 于是,得以人民币为单位时的样本回归模型为 () 若只将住房支出(Y)的单位调整为元,总支出(Y)的单位不变,则由模型(1)可得 于是,样本回归模型改变为 () (6) = -4.79 +0.087×1000=82.21(法郎) 在0.95的置信度下,其平均住房支出的预测区间为 [82.21- t0.025(58)×31.74, 82.21+ t0.025(58)×31.74] 即[18.73, 145.69]。 2.解 (1)模型存在异方差性。因为White检验?20.05(4)=9.488,所以在0.05的显著性水平下,可以认为模型存在异方差性。 (2)利用OLS法估计存在异方差的模型会产生以下后果:OLS估计量不具有最小方差性;通常的变量和方程的显著性检验失效;预测精度下降且通常的预测区间不可靠。 消除异方差:用同时乘原模型两端,得 因为 所以变换后的模型已不存在异方差性。 3.解 (1)模型存在一阶正自相关。依据:因为DW=0.45 dL=1.22,因此依据DW检验规则,在0.05的显著性水平下,可以认为模型存在一阶正自相关性。 (2)模型存在阶数不高于2的自相关性。依据:LM检验的统计量nR2=12.19χ20.05(2)=5.99,因此在0.05的显著性水平下,可以认为模型存在阶数不高于2的自相关性。(也可以利用表中的P值进行判断:因为LM统计量的P值=0.002250.05,因此在0.05的显著性水平下,可以认为模型存在阶数不高于2的自相关性。) (3)利用可行的广义差分法进行修正。设lnYt对lnXt的总体回归模型为 lnYt=(0+(1lnXt+ut ① ut的自相关性表现形式为 首先,利用对原模型①进行广义差分变换,得广义差分模型 lnYt-0.775 lnYt-1=(0*+(1(lnXt-0.775lnXt-1)+ut ② 其中(0*=(0(1-0.775). 然后,对模型②进行OLS回归,得到参数(0*、(1的估计量。进而得到原模型①中参数的估计量分别为和. 4.*D1的系数进行显著性检验:因为|t|=4.09t0.025(22)=2.07,所以在0.05的显著性水平下,可以认为DPI*D1的系数显著不为0。此结果表明1982年的经济衰退改变了美国人的边际储蓄倾向。 (分析过程:总体回归模型中引入了交叉乘积项DPI*D1,若其系数为0,则表明DPI的 系数,即边际储蓄倾向,与观测点无关;否则,则反是。) (2)利用关系式,可得模型(1)的残差平方和为 模型(2)的残差平方和为 (3)对于该模型,若?1和?3同时为0,则模型的结构不存在突变;否则,则反是。因 此,设定检验“模型不存在结构突变”的零假设为H0:?1 =?3=0。 利用F检验法检验H0的显著性:因为 F(2,22)=3.44 所以在0.05的显著性水平下拒绝零假设H0。此结果表明模型存在结构突变。 (4)(注意:这里无论如何引入虚拟变量,只要模型是可以识别的,采用同样的方法得到的储蓄函数都一样!) 由模型(2)得 在1970-1981年间,St = 1.02+ 0.08DPIt +et 在1982-1995年间,St = 153.5+ 0.01DPIt +et 由模型(3)得 在1970-1981年间,St = (2 +(4DPI +et 在1982-1995年间,St = (1 +(3DPI +et 由此可知,(1=153.5,(2=1.02,(3=0.01,(4=0.08 若模型(3)中引入常数项和DPI作为解释变量,建立模型 St =(0+(DPIt +(1 D1t+ (2 D2t+(3DPIt*D1t+(4DPIt*D2t+ut 该模型存在
显示全部
相似文档